网站建设未来发展文具用品网站设计规划书
2026/2/11 14:51:13 网站建设 项目流程
网站建设未来发展,文具用品网站设计规划书,炫酷网站建设,创意设计作品欣赏一、项目介绍 摘要 本项目创新性地应用YOLOv8深度学习框架#xff0c;开发了一套面向水产养殖业的虾病害智能检测系统。系统专门针对四种常见且危害严重的虾类疾病进行检测#xff1a;黑斑病(black-spots)、黑鳃病(blackgill)、肝胰腺苍白病(pale-hepatopancreas)和白斑综合…一、项目介绍摘要本项目创新性地应用YOLOv8深度学习框架开发了一套面向水产养殖业的虾病害智能检测系统。系统专门针对四种常见且危害严重的虾类疾病进行检测黑斑病(black-spots)、黑鳃病(blackgill)、肝胰腺苍白病(pale-hepatopancreas)和白斑综合症病毒病(wssv)。项目采用包含528张训练图像、85张验证图像和20张测试图像的专业数据集通过先进的计算机视觉技术实现了对虾体表及内部器官病变的精准识别。该系统突破了传统人工检测方法的局限性能够在养殖现场快速、准确地诊断虾类健康状况为养殖户提供及时有效的病害预警。系统检测速度达到毫秒级准确率优于行业平均水平可部署于移动端设备或集成到养殖场监控系统中实现全天候自动化监测。本项目的实施将显著提升虾类养殖的病害防控能力对保障水产品质量安全、促进水产养殖业可持续发展具有重要意义。项目意义1. 提升病害检测效率保障养殖效益传统虾病检测主要依赖经验丰富的技术人员肉眼观察这种方法效率低下且容易遗漏早期症状。本系统可在短时间内完成大批量虾体的健康筛查检测速度比人工提升几十倍帮助养殖户及时发现病害采取针对性措施有效降低经济损失。特别是对传染性极强的wssv白斑综合症病毒病早期发现可避免整池虾群覆没。2. 提高检测准确性降低误判风险虾类病害症状往往具有相似性如黑鳃病(blackgill)与普通鳃部污物难以区分。系统通过深度学习算法能够精准识别四种目标病害的细微特征差异检测准确率达到专业技术人员水平显著降低误诊率为科学防治提供可靠依据。3. 实现病害早期预警预防大规模爆发系统特别擅长识别肝胰腺苍白病(pale-hepatopancreas)等内部器官病变的早期表现这些症状人眼难以察觉但危害严重。通过定期自动检测可在病害爆发前发出预警帮助养殖户提前调整饲料配方或水质参数防患于未然。4. 促进科学养殖减少抗生素滥用当前养殖业普遍存在过度使用抗生素的问题。本系统提供的精准病害诊断可帮助养殖户有针对性地使用药物避免盲目用药既降低生产成本又减少药物残留提升虾类产品品质和市场竞争力。5. 推动智慧渔业发展助力产业升级本系统是人工智能技术在传统水产养殖领域的创新应用可与物联网水质监测、自动投喂系统等智能设备联动构建智慧养殖管理平台推动水产养殖业向数字化、智能化方向转型。6. 弥补专业人才短缺服务基层养殖户我国水产养殖业规模庞大但专业病害防治人员严重不足。系统操作简单普通养殖人员经过短期培训即可熟练使用有效解决了基层养殖户看病难的问题特别适合在偏远地区推广使用。7. 建立病害数据库支撑科研与决策系统在运行过程中积累的检测数据可为水产科研机构提供宝贵的病害流行病学研究资料帮助政府部门掌握病害流行趋势制定科学的防控政策。技术特点多尺度特征融合针对虾体不同部位病变特点采用多尺度特征提取技术既能检测体表明显的黑斑病(black-spots)也能识别鳃部微妙的黑鳃病(blackgill)变化。小样本学习优化在训练数据有限528张的情况下通过数据增强和迁移学习技术确保模型具有良好的泛化能力。轻量化设计对YOLOv8模型进行剪枝和量化处理使其可在手机等移动设备上流畅运行适应养殖场实地使用需求。抗干扰能力强能够有效区分正常色素沉着与病理性黑斑避免水质浑浊等环境因素的干扰。应用前景本系统可广泛应用于对虾养殖场的日常健康监测虾苗繁育基地的质量把控水产技术推广站的病害诊断服务水产品加工企业的原料验收海关进出口检验检疫水产科研机构的病害研究农业保险公司的风险评估总结本项目的YOLOv8虾病害智能检测系统将先进的人工智能技术与水产养殖实际需求相结合有效解决了行业痛点问题。系统不仅能够提高病害检测的效率和准确性还能促进养殖模式转型升级推动绿色健康养殖发展。随着系统的不断完善和推广应用预计可为我国对虾养殖业减少约15%的病害损失创造显著的经济效益和社会效益。未来我们将继续扩充病害种类识别范围提升系统性能为保障水产品安全供给、促进渔业可持续发展作出更大贡献。基于深度学习的虾病害检测系统YOLOv8YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习的虾病害检测系统YOLOv8YOLO数据集UI界面Python项目源码模型二、项目功能展示系统功能✅图片检测可对单张图片进行检测返回检测框及类别信息。✅批量图片检测支持文件夹输入一次性检测多张图片生成批量检测结果。✅视频检测支持视频文件输入检测视频中每一帧的情况。✅摄像头实时检测连接USB 摄像头实现实时监测图片检测该功能允许用户通过单张图片进行目标检测。输入一张图片后YOLO模型会实时分析图像识别出其中的目标并在图像中框出检测到的目标输出带有目标框的图像。批量图片检测用户可以一次性上传多个图片进行批量处理。该功能支持对多个图像文件进行并行处理并返回每张图像的目标检测结果适用于需要大规模处理图像数据的应用场景。视频检测视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示适用于视频监控和分析等场景。摄像头实时检测该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用提供即时反馈。核心特点高精度基于YOLO模型提供精确的目标检测能力适用于不同类型的图像和视频。实时性特别优化的算法使得实时目标检测成为可能无论是在视频还是摄像头实时检测中响应速度都非常快。批量处理支持高效的批量图像和视频处理适合大规模数据分析。三、数据集介绍数据集概述本项目的数据集包含四类病害标签black-spots黑斑病、blackgill黑鳃病、pale-hepatopancreas肝胰腺苍白病、wssv白斑综合症病毒。数据集分为训练集、验证集和测试集数据集配置文件data.yamltrain: .\datasets\images\train val: .\datasets\images\val test: .\datasets\images\test nc: 4 names: [black-spots, blackgill, pale-hepatopancreas, wssv]数据集制作流程标注数据使用标注工具如LabelImg、CVAT等对图像中的目标进行标注。每个目标需要标出边界框并且标注类别。转换格式将标注的数据转换为YOLO格式。YOLO标注格式为每行object-class x_center y_center width height这些坐标是相对于图像尺寸的比例。分割数据集将数据集分为训练集、验证集和测试集通常的比例是80%训练集、10%验证集和10%测试集。准备标签文件为每张图片生成一个对应的标签文件确保标签文件与图片的命名一致。调整图像尺寸根据YOLO网络要求统一调整所有图像的尺寸如416x416或608x608。四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov8 python3.9激活虚拟环境conda activate yolov8安装cpu版本pytorchpip install torch torchvision torchaudiopycharm中配置anaconda安装所需要库pip install -r requirements.txt五、模型训练训练代码from ultralytics import YOLO model_path yolov8s.pt data_path datasets/data.yaml if __name__ __main__: model YOLO(model_path) results model.train(datadata_path, epochs500, batch64, device0, workers0, projectruns/detect, nameexp, )根据实际情况更换模型 yolov8n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 yolov8s.yaml (small)小模型适合实时任务。 yolov8m.yaml (medium)中等大小模型兼顾速度和精度。 yolov8b.yaml (base)基本版模型适合大部分应用场景。 yolov8l.yaml (large)大型模型适合对精度要求高的任务。--batch 64每批次64张图像。--epochs 500训练500轮。--datasets/data.yaml数据集配置文件。--weights yolov8s.pt初始化模型权重yolov8s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码# -*- coding: utf-8 -*- import os import sys import time import cv2 import numpy as np from PIL import ImageFont from PyQt5.QtCore import Qt, QTimer, QThread, pyqtSignal, QCoreApplication from PyQt5.QtWidgets import (QApplication, QMainWindow, QFileDialog, QMessageBox, QWidget, QHeaderView, QTableWidgetItem, QAbstractItemView) from ultralytics import YOLO # 自定义模块导入 sys.path.append(UIProgram) from UIProgram.UiMain import Ui_MainWindow from UIProgram.QssLoader import QSSLoader from UIProgram.precess_bar import ProgressBar import detect_tools as tools import Config class DetectionApp(QMainWindow): def __init__(self, parentNone): super().__init__(parent) self.ui Ui_MainWindow() self.ui.setupUi(self) # 初始化应用 self._setup_ui() self._connect_signals() self._load_stylesheet() # 模型和资源初始化 self._init_detection_resources() def _setup_ui(self): 初始化UI界面设置 self.display_width 700 self.display_height 500 self.source_path None self.camera_active False self.video_capture None # 配置表格控件 table self.ui.tableWidget table.verticalHeader().setSectionResizeMode(QHeaderView.Fixed) table.verticalHeader().setDefaultSectionSize(40) table.setColumnWidth(0, 80) # ID列 table.setColumnWidth(1, 200) # 路径列 table.setColumnWidth(2, 150) # 类别列 table.setColumnWidth(3, 90) # 置信度列 table.setColumnWidth(4, 230) # 位置列 table.setSelectionBehavior(QAbstractItemView.SelectRows) table.verticalHeader().setVisible(False) table.setAlternatingRowColors(True) def _connect_signals(self): 连接按钮信号与槽函数 self.ui.PicBtn.clicked.connect(self._handle_image_input) self.ui.comboBox.activated.connect(self._update_selection) self.ui.VideoBtn.clicked.connect(self._handle_video_input) self.ui.CapBtn.clicked.connect(self._toggle_camera) self.ui.SaveBtn.clicked.connect(self._save_results) self.ui.ExitBtn.clicked.connect(QCoreApplication.quit) self.ui.FilesBtn.clicked.connect(self._process_image_batch) def _load_stylesheet(self): 加载CSS样式表 style_file UIProgram/style.css qss QSSLoader.read_qss_file(style_file) self.setStyleSheet(qss) def _init_detection_resources(self): 初始化检测相关资源 # 加载YOLOv8模型 self.detector YOLO(runs/detect/exp/weights/best.pt, taskdetect) self.detector(np.zeros((48, 48, 3))) # 预热模型 # 初始化字体和颜色 self.detection_font ImageFont.truetype(Font/platech.ttf, 25, 0) self.color_palette tools.Colors() # 初始化定时器 self.frame_timer QTimer() self.save_timer QTimer() def _handle_image_input(self): 处理单张图片输入 self._stop_video_capture() file_path, _ QFileDialog.getOpenFileName( self, 选择图片, ./, 图片文件 (*.jpg *.jpeg *.png)) if not file_path: return self._process_single_image(file_path) def _process_single_image(self, image_path): 处理并显示单张图片的检测结果 self.source_path image_path self.ui.comboBox.setEnabled(True) # 读取并检测图片 start_time time.time() detection_results self.detector(image_path)[0] processing_time time.time() - start_time # 解析检测结果 boxes detection_results.boxes.xyxy.tolist() self.detection_boxes [list(map(int, box)) for box in boxes] self.detection_classes detection_results.boxes.cls.int().tolist() confidences detection_results.boxes.conf.tolist() self.confidence_scores [f{score * 100:.2f}% for score in confidences] # 更新UI显示 self._update_detection_display(detection_results, processing_time) self._update_object_selection() self._show_detection_details() self._display_results_table(image_path) def _update_detection_display(self, results, process_time): 更新检测结果显示 # 显示处理时间 self.ui.time_lb.setText(f{process_time:.3f} s) # 获取带标注的图像 annotated_img results.plot() self.current_result annotated_img # 调整并显示图像 width, height self._calculate_display_size(annotated_img) resized_img cv2.resize(annotated_img, (width, height)) qimage tools.cvimg_to_qpiximg(resized_img) self.ui.label_show.setPixmap(qimage) self.ui.label_show.setAlignment(Qt.AlignCenter) self.ui.PiclineEdit.setText(self.source_path) # 更新检测数量 self.ui.label_nums.setText(str(len(self.detection_classes))) def _calculate_display_size(self, image): 计算适合显示的图像尺寸 img_height, img_width image.shape[:2] aspect_ratio img_width / img_height if aspect_ratio self.display_width / self.display_height: width self.display_width height int(width / aspect_ratio) else: height self.display_height width int(height * aspect_ratio) return width, height def _update_object_selection(self): 更新目标选择下拉框 options [全部] target_labels [ f{Config.names[cls_id]}_{idx} for idx, cls_id in enumerate(self.detection_classes) ] options.extend(target_labels) self.ui.comboBox.clear() self.ui.comboBox.addItems(options) def _show_detection_details(self, index0): 显示检测目标的详细信息 if not self.detection_boxes: self._clear_detection_details() return box self.detection_boxes[index] self.ui.type_lb.setText(Config.CH_names[self.detection_classes[index]]) self.ui.label_conf.setText(self.confidence_scores[index]) self.ui.label_xmin.setText(str(box[0])) self.ui.label_ymin.setText(str(box[1])) self.ui.label_xmax.setText(str(box[2])) self.ui.label_ymax.setText(str(box[3])) def _clear_detection_details(self): 清空检测详情显示 self.ui.type_lb.setText() self.ui.label_conf.setText() self.ui.label_xmin.setText() self.ui.label_ymin.setText() self.ui.label_xmax.setText() self.ui.label_ymax.setText() def _display_results_table(self, source_path): 在表格中显示检测结果 table self.ui.tableWidget table.setRowCount(0) table.clearContents() for idx, (box, cls_id, conf) in enumerate(zip( self.detection_boxes, self.detection_classes, self.confidence_scores)): row table.rowCount() table.insertRow(row) # 添加表格项 items [ QTableWidgetItem(str(row 1)), # ID QTableWidgetItem(source_path), # 路径 QTableWidgetItem(Config.CH_names[cls_id]), # 类别 QTableWidgetItem(conf), # 置信度 QTableWidgetItem(str(box)) # 位置坐标 ] # 设置文本居中 for item in [items[0], items[2], items[3]]: item.setTextAlignment(Qt.AlignCenter) # 添加到表格 for col, item in enumerate(items): table.setItem(row, col, item) table.scrollToBottom() def _process_image_batch(self): 批量处理图片 self._stop_video_capture() folder QFileDialog.getExistingDirectory(self, 选择图片文件夹, ./) if not folder: return self.source_path folder valid_extensions {jpg, png, jpeg, bmp} for filename in os.listdir(folder): filepath os.path.join(folder, filename) if (os.path.isfile(filepath) and filename.split(.)[-1].lower() in valid_extensions): self._process_single_image(filepath) QApplication.processEvents() # 保持UI响应 def _update_selection(self): 更新用户选择的检测目标显示 selection self.ui.comboBox.currentText() if selection 全部: boxes self.detection_boxes display_img self.current_result self._show_detection_details(0) else: idx int(selection.split(_)[-1]) boxes [self.detection_boxes[idx]] display_img self.detector(self.source_path)[0][idx].plot() self._show_detection_details(idx) # 更新显示 width, height self._calculate_display_size(display_img) resized_img cv2.resize(display_img, (width, height)) qimage tools.cvimg_to_qpiximg(resized_img) self.ui.label_show.clear() self.ui.label_show.setPixmap(qimage) self.ui.label_show.setAlignment(Qt.AlignCenter) def _handle_video_input(self): 处理视频输入 if self.camera_active: self._toggle_camera() video_path self._get_video_path() if not video_path: return self._start_video_processing(video_path) self.ui.comboBox.setEnabled(False) def _get_video_path(self): 获取视频文件路径 path, _ QFileDialog.getOpenFileName( self, 选择视频, ./, 视频文件 (*.avi *.mp4)) if path: self.source_path path self.ui.VideolineEdit.setText(path) return path return None def _start_video_processing(self, video_path): 开始处理视频流 self.video_capture cv2.VideoCapture(video_path) self.frame_timer.start(1) self.frame_timer.timeout.connect(self._process_video_frame) def _stop_video_capture(self): 停止视频捕获 if self.video_capture: self.video_capture.release() self.frame_timer.stop() self.camera_active False self.ui.CaplineEdit.setText(摄像头未开启) self.video_capture None def _process_video_frame(self): 处理视频帧 ret, frame self.video_capture.read() if not ret: self._stop_video_capture() return # 执行目标检测 start_time time.time() results self.detector(frame)[0] processing_time time.time() - start_time # 解析结果 self.detection_boxes results.boxes.xyxy.int().tolist() self.detection_classes results.boxes.cls.int().tolist() self.confidence_scores [f{conf * 100:.2f}% for conf in results.boxes.conf.tolist()] # 更新显示 self._update_detection_display(results, processing_time) self._update_object_selection() self._show_detection_details() self._display_results_table(self.source_path) def _toggle_camera(self): 切换摄像头状态 self.camera_active not self.camera_active if self.camera_active: self.ui.CaplineEdit.setText(摄像头开启) self.video_capture cv2.VideoCapture(0) self._start_video_processing(0) self.ui.comboBox.setEnabled(False) else: self.ui.CaplineEdit.setText(摄像头未开启) self.ui.label_show.clear() self._stop_video_capture() def _save_results(self): 保存检测结果 if not self.video_capture and not self.source_path: QMessageBox.information(self, 提示, 没有可保存的内容请先打开图片或视频) return if self.camera_active: QMessageBox.information(self, 提示, 无法保存摄像头实时视频) return if self.video_capture: self._save_video_result() else: self._save_image_result() def _save_video_result(self): 保存视频检测结果 confirm QMessageBox.question( self, 确认, 保存视频可能需要较长时间确定继续吗, QMessageBox.Yes | QMessageBox.No) if confirm QMessageBox.No: return self._stop_video_capture() saver VideoSaverThread( self.source_path, self.detector, self.ui.comboBox.currentText()) saver.start() saver.update_ui_signal.connect(self._update_progress) def _save_image_result(self): 保存图片检测结果 if os.path.isfile(self.source_path): # 处理单张图片 filename os.path.basename(self.source_path) name, ext filename.rsplit(., 1) save_name f{name}_detect_result.{ext} save_path os.path.join(Config.save_path, save_name) cv2.imwrite(save_path, self.current_result) QMessageBox.information( self, 完成, f图片已保存至: {save_path}) else: # 处理文件夹中的图片 valid_exts {jpg, png, jpeg, bmp} for filename in os.listdir(self.source_path): if filename.split(.)[-1].lower() in valid_exts: filepath os.path.join(self.source_path, filename) name, ext filename.rsplit(., 1) save_name f{name}_detect_result.{ext} save_path os.path.join(Config.save_path, save_name) results self.detector(filepath)[0] cv2.imwrite(save_path, results.plot()) QMessageBox.information( self, 完成, f所有图片已保存至: {Config.save_path}) def _update_progress(self, current, total): 更新保存进度 if current 1: self.progress_dialog ProgressBar(self) self.progress_dialog.show() if current total: self.progress_dialog.close() QMessageBox.information( self, 完成, f视频已保存至: {Config.save_path}) return if not self.progress_dialog.isVisible(): return percent int(current / total * 100) self.progress_dialog.setValue(current, total, percent) QApplication.processEvents() class VideoSaverThread(QThread): 视频保存线程 update_ui_signal pyqtSignal(int, int) def __init__(self, video_path, model, selection): super().__init__() self.video_path video_path self.detector model self.selection selection self.active True self.colors tools.Colors() def run(self): 执行视频保存 cap cv2.VideoCapture(self.video_path) fourcc cv2.VideoWriter_fourcc(*XVID) fps cap.get(cv2.CAP_PROP_FPS) size ( int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) filename os.path.basename(self.video_path) name, _ filename.split(.) save_path os.path.join( Config.save_path, f{name}_detect_result.avi) writer cv2.VideoWriter(save_path, fourcc, fps, size) total_frames int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) current_frame 0 while cap.isOpened() and self.active: current_frame 1 ret, frame cap.read() if not ret: break # 执行检测 results self.detector(frame)[0] frame results.plot() writer.write(frame) self.update_ui_signal.emit(current_frame, total_frames) # 释放资源 cap.release() writer.release() def stop(self): 停止保存过程 self.active False if __name__ __main__: app QApplication(sys.argv) window DetectionApp() window.show() sys.exit(app.exec_())七、项目演示与介绍视频基于深度学习的虾病害检测系统YOLOv8YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习的虾病害检测系统YOLOv8YOLO数据集UI界面Python项目源码模型

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询