2026/2/19 3:44:34
网站建设
项目流程
wordpress做下载站,安卓盒子+做网站,中石油网页设计与网站建设,旅游网站建设方法的探讨Open-AutoGLM快递查询自动化#xff1a;物流信息获取执行部署
1. 引言
随着移动互联网的深入发展#xff0c;用户在手机端的操作日益频繁#xff0c;大量重复性任务如查快递、填表单、跨应用跳转等占据了宝贵时间。为解决这一问题#xff0c;智谱AI推出了Open-AutoGLM——…Open-AutoGLM快递查询自动化物流信息获取执行部署1. 引言随着移动互联网的深入发展用户在手机端的操作日益频繁大量重复性任务如查快递、填表单、跨应用跳转等占据了宝贵时间。为解决这一问题智谱AI推出了Open-AutoGLM——一个开源的手机端AI Agent框架旨在通过自然语言驱动实现全自动化的手机操作。该框架基于视觉语言模型VLM与Android Debug BridgeADB技术构建能够理解屏幕内容、解析用户意图并自动规划和执行操作流程。用户只需输入“帮我查一下京东快递”或“打开小红书搜美食”系统即可自主完成从应用启动、页面导航到信息提取的完整链路。本文将聚焦于如何利用Open-AutoGLM实现“快递查询自动化”的典型场景涵盖环境搭建、设备连接、AI代理部署及实际执行全流程帮助开发者快速上手并落地真实应用场景。2. 技术架构与核心能力2.1 AutoGLM-Phone 框架概述AutoGLM-Phone 是 Open-AutoGLM 的核心技术内核其设计目标是打造一个具备多模态感知与动作决策能力的手机智能助理。整个系统由三大模块构成视觉理解层采用视觉语言模型对手机屏幕截图进行语义解析识别UI元素、文本内容与当前状态。动作规划层结合上下文记忆与任务目标生成下一步操作指令如点击、滑动、输入。设备控制层通过 ADB 协议向安卓设备发送底层命令实现无侵入式自动化控制。该框架支持真机与模拟器运行兼容 Android 7.0 系统并内置安全机制在涉及敏感操作如支付、登录时可暂停并提示人工接管。2.2 多模态交互与自然语言驱动传统自动化工具如Appium、Auto.js依赖固定脚本或坐标定位维护成本高且泛化能力差。而 Open-AutoGLM 的核心优势在于其以自然语言为入口的端到端自动化能力。例如当用户输入“打开京东App查看我最新的快递物流信息”系统会自动执行以下步骤启动京东App导航至“我的订单”页面定位最新一笔待收货订单进入物流详情页并截图返回结果。整个过程无需预设路径或编写脚本完全由AI根据实时界面动态决策。2.3 支持远程调试与云端推理为了降低本地算力要求Open-AutoGLM 支持将视觉理解与决策模型部署在云服务器上本地仅保留轻量级控制端。通过WiFi或USB连接控制端定时抓取屏幕图像并上传至云端模型获得操作建议后下发执行。此外系统提供远程ADB调试能力允许开发者通过网络连接设备极大提升了开发效率与部署灵活性。3. 环境准备与设备配置3.1 硬件与软件要求类别要求操作系统Windows / macOSPython 版本3.10 或以上安卓设备Android 7.0 手机或模拟器工具依赖ADB、Git、pip3.2 ADB 工具安装与配置ADBAndroid Debug Bridge是连接PC与安卓设备的核心工具。以下是不同平台的配置方法Windows 配置步骤下载 Android SDK Platform Tools 并解压。按Win R输入sysdm.cpl进入“高级系统设置” → “环境变量”。在“系统变量”中找到Path添加ADB解压目录路径如C:\platform-tools。打开命令行执行adb version若输出版本号则表示配置成功。macOS 配置方法在终端中执行以下命令假设文件解压至~/Downloads/platform-toolsexport PATH${PATH}:~/Downloads/platform-tools可将其写入.zshrc或.bash_profile实现永久生效。3.3 手机端设置确保手机已正确配置开发者权限与输入法支持开启开发者模式设置 → 关于手机 → 连续点击“版本号”7次直至提示“您已进入开发者模式”。启用 USB 调试设置 → 开发者选项 → 勾选“USB调试”。安装 ADB Keyboard下载并安装 ADB Keyboard APK。进入“语言与输入法”设置将默认输入法切换为“ADB Keyboard”。作用说明启用后可通过 ADB 发送文本输入指令避免手动打字。4. 控制端部署与设备连接4.1 克隆项目并安装依赖在本地电脑执行以下命令# 克隆仓库 git clone https://github.com/zai-org/Open-AutoGLM cd Open-AutoGLM # 安装依赖 pip install -r requirements.txt pip install -e .注意建议使用虚拟环境如venv或conda隔离依赖。4.2 设备连接方式USB 连接推荐用于调试使用数据线连接手机与电脑。手机弹出“允许USB调试”提示时点击“确定”。执行命令验证连接adb devices正常输出示例List of devices attached 1234567890abcde deviceWiFi 远程连接适用于无线部署若需脱离USB线缆可通过TCP/IP模式连接先用USB连接设备执行adb tcpip 5555断开USB获取手机IP地址可在“设置-关于手机-状态信息”中查看。使用WiFi连接adb connect 192.168.x.x:5555再次执行adb devices确认连接状态。5. 快递查询自动化实战5.1 场景描述我们以“查询京东快递最新物流信息”为例演示如何通过自然语言指令驱动AI完成全流程操作。目标输入指令“打开京东App查看我最新的快递物流信息”系统应能自动进入物流详情页并返回结果。5.2 启动 AI 代理服务云端请提前在云服务器部署 vLLM 推理服务启动 AutoGLM 模型实例。参考命令如下python -m vllm.entrypoints.openai.api_server \ --host 0.0.0.0 \ --port 8800 \ --model zhipu/autoglm-phone-9b \ --tensor-parallel-size 2 \ --max-model-len 8192确保防火墙开放对应端口如8800并可通过公网IP访问。5.3 本地调用 AI 执行任务在本地 Open-AutoGLM 目录下运行主程序python main.py \ --device-id 1234567890abcde \ --base-url http://your-server-ip:8800/v1 \ --model autoglm-phone-9b \ 打开京东App查看我最新的快递物流信息参数说明--device-id通过adb devices获取的设备ID。--base-url替换为你的云服务器公网IP和端口。最后的字符串自然语言指令。5.4 执行流程分析系统将按以下逻辑逐步执行意图解析识别关键词“京东App”、“快递”、“物流信息”。应用启动调用am start命令启动京东App。界面导航通过OCR识别“我的”标签并点击。订单查找滚动查找最近订单判断是否有“待收货”状态。物流跳转点击订单进入物流详情页。结果反馈截屏并上传关键信息如物流公司、运单号、最新节点。整个过程无需人工干预平均耗时约30~60秒具体取决于网络与设备响应速度。6. API 编程接口与扩展应用除了命令行方式Open-AutoGLM 还提供了 Python API便于集成到其他系统中。6.1 ADB 连接管理示例from phone_agent.adb import ADBConnection, list_devices # 创建连接管理器 conn ADBConnection() # 连接远程设备 success, message conn.connect(192.168.1.100:5555) print(f连接状态: {message}) # 列出已连接设备 devices list_devices() for device in devices: print(f{device.device_id} - {device.connection_type.value}) # 在 USB 设备上启用 TCP/IP success, message conn.enable_tcpip(5555) ip conn.get_device_ip() print(f设备 IP: {ip}) # 断开连接 conn.disconnect(192.168.1.100:5555)6.2 自定义任务调度可封装常用任务为函数实现批量处理def check_express(device_id, platformjd): command fpython main.py --device-id {device_id} --base-url http://server:8800/v1 --model autoglm-phone-9b if platform jd: instruction 打开京东App查看最新快递物流信息 elif platform taobao: instruction 打开淘宝进入‘我的’→‘我的订单’查看最新物流动态 os.system(f{command} \{instruction}\)可用于企业级自动化运维、客服机器人辅助、电商运营监控等场景。7. 常见问题与优化建议7.1 常见问题排查问题现象可能原因解决方案ADB 无法识别设备未开启USB调试检查开发者选项连接被拒绝防火墙阻断端口开放云服务器8800等端口模型无响应显存不足或参数错误检查--tensor-parallel-size和 GPU 资源输入失败ADB Keyboard 未启用检查默认输入法设置ADB 掉线频繁WiFi信号不稳定改用USB连接或优化网络7.2 性能优化建议提升推理速度使用更高性能GPU或量化模型如INT4降低延迟。减少截图频率合理设置采样间隔避免过度请求影响流畅性。缓存历史状态记录页面结构变化减少重复识别开销。增加容错机制加入超时重试、异常回退逻辑提高稳定性。8. 总结Open-AutoGLM 作为智谱AI推出的开源手机端AI Agent框架凭借其强大的多模态理解能力和自然语言驱动特性正在重新定义移动端自动化的方式。本文以“快递查询”为切入点详细介绍了从环境搭建、设备连接到任务执行的完整流程。通过结合 ADB 控制、视觉语言模型与云端推理开发者可以轻松实现跨应用、跨页面的复杂任务自动化。无论是个人效率提升还是企业级RPA应用Open-AutoGLM 都展现出极高的实用价值和发展潜力。未来随着模型能力的持续迭代与生态工具链的完善这类AI驱动的手机助手有望成为每个人数字生活中的“无形帮手”。获取更多AI镜像想探索更多AI镜像和应用场景访问 CSDN星图镜像广场提供丰富的预置镜像覆盖大模型推理、图像生成、视频生成、模型微调等多个领域支持一键部署。