2026/1/13 11:23:45
网站建设
项目流程
网站建设公司 深圳信科,怎么在一起做网站上拿货,软通动力和中软国际对比,苏州seo关键词优化外包一、项目介绍
摘要
本项目基于YOLOv8目标检测算法开发了一套专业的篮球比赛场景智能分析系统#xff0c;能够实时检测和识别比赛中的9类关键元素#xff1a;篮球(Ball)、篮筐(Hoop)、比赛节次(Period)、运动员(Player)、裁判(Ref)、进攻计时器(Shot Clock)、队名(Team Name…一、项目介绍摘要本项目基于YOLOv8目标检测算法开发了一套专业的篮球比赛场景智能分析系统能够实时检测和识别比赛中的9类关键元素篮球(Ball)、篮筐(Hoop)、比赛节次(Period)、运动员(Player)、裁判(Ref)、进攻计时器(Shot Clock)、队名(Team Name)、球队得分(Team Points)和剩余时间(Time Remaining)。系统使用包含1,196张标注图像的数据集进行训练和评估其中训练集1,140张验证集32张测试集24张。该系统通过深度学习技术实现了对篮球比赛场景的全面理解不仅能够识别运动员和裁判等人物目标还能捕捉比赛状态信息如得分、时间和节次等关键数据。YOLOv8算法的高效性使得系统能够在保持高精度的同时实现实时检测为篮球比赛分析、战术研究和智能转播提供了强有力的技术支持。项目意义1. 体育分析与训练辅助本系统为篮球教练团队和运动员提供了强大的数据分析工具。通过自动检测和记录比赛中的各种元素系统能够帮助分析球员位置、移动轨迹、得分时机等关键信息为战术制定和训练改进提供数据支持。相比传统的人工视频分析该系统大大提高了效率并减少了主观偏差。2. 智能裁判辅助系统对裁判(Ref)和关键比赛元素(如篮球、篮筐)的准确检测可以辅助裁判做出更公正的判罚特别是在争议场景如出界、干扰球等情况下提供客观依据。系统还可自动监测进攻计时器(Shot Clock)减少人为计时错误。3. 比赛直播与观众体验提升该系统能够实时识别比赛中的各类信息为电视转播和网络直播提供自动化的图文叠加功能。自动显示的比分(Team Points)、剩余时间(Time Remaining)和节次(Period)等信息可以丰富观众的观赛体验同时降低制作成本。4. 体育大数据积累通过大量比赛数据的自动采集和分析系统有助于建立全面的篮球比赛数据库为长期的运动表现评估、趋势分析和战术演变研究奠定基础。这些数据对职业球队、体育科研机构和博彩行业都具有重要价值。5. 计算机视觉技术在体育领域的应用拓展本项目展示了深度学习目标检测技术在专业体育场景中的实际应用潜力为解决更复杂的体育分析问题(如动作识别、战术模式检测等)提供了技术基础。系统的架构和方法也可以迁移到其他球类运动的分析中。6. 小样本学习的实践探索尽管验证集和测试集规模相对较小但项目探索了在小样本情况下如何通过数据增强、迁移学习等技术实现较好的检测效果为类似场景下的计算机视觉应用提供了参考。综上所述本YOLOv8篮球运动员检测系统不仅具有直接的实用价值也为体育科技和计算机视觉的交叉研究提供了有益案例其技术路线和应用模式对相关领域的发展具有启发意义。目录一、项目介绍摘要项目意义1. 体育分析与训练辅助2. 智能裁判辅助系统3. 比赛直播与观众体验提升4. 体育大数据积累5. 计算机视觉技术在体育领域的应用拓展6. 小样本学习的实践探索二、项目功能展示系统功能图片检测视频检测摄像头实时检测三、数据集介绍数据集概述数据集特点数据集配置文件数据集制作流程四、项目环境配置创建虚拟环境pycharm中配置anaconda安装所需要库五、模型训练训练代码训练结果六、核心代码编辑七、项目源码(视频简介内)基于深度学习YOLOv8的篮球运动员检测系统YOLOv8YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv8的篮球运动员检测系统YOLOv8YOLO数据集UI界面Python项目源码模型二、项目功能展示系统功能✅图片检测可对图片进行检测返回检测框及类别信息。✅视频检测支持视频文件输入检测视频中每一帧的情况。✅摄像头实时检测连接USB 摄像头实现实时监测。✅参数实时调节置信度和IoU阈值图片检测该功能允许用户通过单张图片进行目标检测。输入一张图片后YOLO模型会实时分析图像识别出其中的目标并在图像中框出检测到的目标输出带有目标框的图像。批量图片检测用户可以一次性上传多个图片进行批量处理。该功能支持对多个图像文件进行并行处理并返回每张图像的目标检测结果适用于需要大规模处理图像数据的应用场景。视频检测视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示适用于视频监控和分析等场景。摄像头实时检测该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用提供即时反馈。核心特点高精度基于YOLO模型提供精确的目标检测能力适用于不同类型的图像和视频。实时性特别优化的算法使得实时目标检测成为可能无论是在视频还是摄像头实时检测中响应速度都非常快。批量处理支持高效的批量图像和视频处理适合大规模数据分析。三、数据集介绍数据集概述本项目的核心是专门为篮球比赛场景构建的目标检测数据集共包含1196张图像划分为训练集1140张验证集32张测试集24张数据集覆盖了篮球比赛中的9类关键对象Ball篮球Hoop篮筐Period比赛阶段标识Player球员Ref裁判Shot Clock进攻计时器Team Name队名标识Team Points得分显示Time Remaining剩余时间显示数据集特点场景多样性包含不同比赛场馆、不同角度俯视、侧视、观众视角等、不同光照条件下的图像。对象复杂性球员和裁判存在不同程度的遮挡和重叠篮球在运动状态下呈现不同形态模糊、清晰、手持等计分板和计时器有不同显示样式标注精细度每个对象都经过精确的边界框标注并按照9个类别进行严格分类。比例代表性训练集、验证集和测试集的比例设置考虑了深度学习模型训练的特点确保模型充分学习特征的同时能有效评估泛化能力。数据平衡性虽然各类别实例数量存在自然差异如球员数量通常多于裁判但通过数据增强技术确保了各类别在训练过程中都能得到充分学习。数据集配置文件数据集采用YOLO格式的标准配置文件train: F:\篮球运动员检测数据集\train\images val: F:\篮球运动员检测数据集\valid\images test: F:\篮球运动员检测数据集\test\images nc: 9 names: [Ball, Hoop, Period, Player, Ref, Shot Clock, Team Name, Team Points, Time Remaining]数据集制作流程原始数据采集通过专业篮球比赛视频截取关键帧收集公开篮球比赛图像部分场景进行实地拍摄数据筛选与清洗剔除模糊、过度曝光或无关图像确保每张图像至少包含一个目标对象平衡不同场景和角度的样本数量标注过程使用专业标注工具进行边界框标注由篮球专业知识的人员验证标注准确性特别处理困难样本如严重遮挡的球员数据集划分按约95:3:2的比例划分训练集、验证集和测试集确保各子集具有相似的类别分布和场景多样性数据增强对训练集应用旋转、翻转、色彩调整等增强技术生成更多样化的训练样本特别注意不破坏篮球比赛特有的空间关系质量验证检查标注框的准确性和一致性验证图像与标签文件的对应关系确保无遗漏或错误标注四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov8 python3.9激活虚拟环境conda activate yolov8安装cpu版本pytorchpip install torch torchvision torchaudiopycharm中配置anaconda安装所需要库pip install -r requirements.txt五、模型训练训练代码from ultralytics import YOLO model_path yolov8s.pt data_path datasets/data.yaml if __name__ __main__: model YOLO(model_path) results model.train(datadata_path, epochs500, batch64, device0, workers0, projectruns/detect, nameexp, )根据实际情况更换模型 yolov8n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 yolov8s.yaml (small)小模型适合实时任务。 yolov8m.yaml (medium)中等大小模型兼顾速度和精度。 yolov8b.yaml (base)基本版模型适合大部分应用场景。 yolov8l.yaml (large)大型模型适合对精度要求高的任务。--batch 64每批次64张图像。--epochs 500训练500轮。--datasets/data.yaml数据集配置文件。--weights yolov8s.pt初始化模型权重yolov8s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import Qt, QTimer from PyQt5.QtGui import QImage, QPixmap, QIcon from PyQt5.QtWidgets import (QFileDialog, QMessageBox, QTableWidgetItem, QStyledItemDelegate, QHeaderView) import cv2 import numpy as np from ultralytics import YOLO import os import datetime import sys class CenteredDelegate(QStyledItemDelegate): def initStyleOption(self, option, index): super().initStyleOption(option, index) option.displayAlignment Qt.AlignCenter class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName(MainWindow) MainWindow.resize(1400, 900) MainWindow.setWindowTitle(YOLOv8 目标检测系统) # 设置窗口图标 if hasattr(sys, _MEIPASS): icon_path os.path.join(sys._MEIPASS, icon.ico) else: icon_path icon.ico if os.path.exists(icon_path): MainWindow.setWindowIcon(QIcon(icon_path)) self.centralwidget QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName(centralwidget) # 主布局 self.main_layout QtWidgets.QHBoxLayout(self.centralwidget) self.main_layout.setContentsMargins(10, 10, 10, 10) self.main_layout.setSpacing(15) # 左侧布局 (图像显示) self.left_layout QtWidgets.QVBoxLayout() self.left_layout.setSpacing(15) # 原始图像组 self.original_group QtWidgets.QGroupBox(原始图像) self.original_group.setMinimumHeight(400) self.original_img_label QtWidgets.QLabel() self.original_img_label.setAlignment(QtCore.Qt.AlignCenter) self.original_img_label.setText(等待加载图像...) self.original_img_label.setStyleSheet(background-color: #F0F0F0; border: 1px solid #CCCCCC;) original_layout QtWidgets.QVBoxLayout() original_layout.addWidget(self.original_img_label) self.original_group.setLayout(original_layout) self.left_layout.addWidget(self.original_group) # 检测结果图像组 self.result_group QtWidgets.QGroupBox(检测结果) self.result_group.setMinimumHeight(400) self.result_img_label QtWidgets.QLabel() self.result_img_label.setAlignment(QtCore.Qt.AlignCenter) self.result_img_label.setText(检测结果将显示在这里) self.result_img_label.setStyleSheet(background-color: #F0F0F0; border: 1px solid #CCCCCC;) result_layout QtWidgets.QVBoxLayout() result_layout.addWidget(self.result_img_label) self.result_group.setLayout(result_layout) self.left_layout.addWidget(self.result_group) self.main_layout.addLayout(self.left_layout, stretch3) # 右侧布局 (控制面板) self.right_layout QtWidgets.QVBoxLayout() self.right_layout.setSpacing(15) # 模型选择组 self.model_group QtWidgets.QGroupBox(模型设置) self.model_group.setStyleSheet(QGroupBox { font-weight: bold; }) self.model_layout QtWidgets.QVBoxLayout() # 模型选择 self.model_combo QtWidgets.QComboBox() self.model_combo.addItems([best.pt]) self.model_combo.setCurrentIndex(0) # 加载模型按钮 self.load_model_btn QtWidgets.QPushButton( 加载模型) self.load_model_btn.setIcon(QIcon.fromTheme(document-open)) self.load_model_btn.setStyleSheet( QPushButton { padding: 8px; background-color: #4CAF50; color: white; border-radius: 4px; } QPushButton:hover { background-color: #45a049; } ) self.model_layout.addWidget(self.model_combo) self.model_layout.addWidget(self.load_model_btn) self.model_group.setLayout(self.model_layout) self.right_layout.addWidget(self.model_group) # 参数设置组 self.param_group QtWidgets.QGroupBox(检测参数) self.param_group.setStyleSheet(QGroupBox { font-weight: bold; }) self.param_layout QtWidgets.QFormLayout() self.param_layout.setLabelAlignment(Qt.AlignLeft) self.param_layout.setFormAlignment(Qt.AlignLeft) self.param_layout.setVerticalSpacing(15) # 置信度滑块 self.conf_slider QtWidgets.QSlider(Qt.Horizontal) self.conf_slider.setRange(1, 99) self.conf_slider.setValue(25) self.conf_value QtWidgets.QLabel(0.25) self.conf_value.setAlignment(Qt.AlignCenter) self.conf_value.setStyleSheet(font-weight: bold; color: #2196F3;) # IoU滑块 self.iou_slider QtWidgets.QSlider(Qt.Horizontal) self.iou_slider.setRange(1, 99) self.iou_slider.setValue(45) self.iou_value QtWidgets.QLabel(0.45) self.iou_value.setAlignment(Qt.AlignCenter) self.iou_value.setStyleSheet(font-weight: bold; color: #2196F3;) self.param_layout.addRow(置信度阈值:, self.conf_slider) self.param_layout.addRow(当前值:, self.conf_value) self.param_layout.addRow(QtWidgets.QLabel()) # 空行 self.param_layout.addRow(IoU阈值:, self.iou_slider) self.param_layout.addRow(当前值:, self.iou_value) self.param_group.setLayout(self.param_layout) self.right_layout.addWidget(self.param_group) # 功能按钮组 self.func_group QtWidgets.QGroupBox(检测功能) self.func_group.setStyleSheet(QGroupBox { font-weight: bold; }) self.func_layout QtWidgets.QVBoxLayout() self.func_layout.setSpacing(10) # 图片检测按钮 self.image_btn QtWidgets.QPushButton( 图片检测) self.image_btn.setIcon(QIcon.fromTheme(image-x-generic)) # 视频检测按钮 self.video_btn QtWidgets.QPushButton( 视频检测) self.video_btn.setIcon(QIcon.fromTheme(video-x-generic)) # 摄像头检测按钮 self.camera_btn QtWidgets.QPushButton( 摄像头检测) self.camera_btn.setIcon(QIcon.fromTheme(camera-web)) # 停止检测按钮 self.stop_btn QtWidgets.QPushButton( 停止检测) self.stop_btn.setIcon(QIcon.fromTheme(process-stop)) self.stop_btn.setEnabled(False) # 保存结果按钮 self.save_btn QtWidgets.QPushButton( 保存结果) self.save_btn.setIcon(QIcon.fromTheme(document-save)) self.save_btn.setEnabled(False) # 设置按钮样式 button_style QPushButton { padding: 10px; background-color: #2196F3; color: white; border: none; border-radius: 4px; text-align: left; } QPushButton:hover { background-color: #0b7dda; } QPushButton:disabled { background-color: #cccccc; } for btn in [self.image_btn, self.video_btn, self.camera_btn, self.stop_btn, self.save_btn]: btn.setStyleSheet(button_style) self.func_layout.addWidget(btn) self.func_group.setLayout(self.func_layout) self.right_layout.addWidget(self.func_group) # 检测结果表格组 self.table_group QtWidgets.QGroupBox(检测结果详情) self.table_group.setStyleSheet(QGroupBox { font-weight: bold; }) self.table_layout QtWidgets.QVBoxLayout() self.result_table QtWidgets.QTableWidget() self.result_table.setColumnCount(4) self.result_table.setHorizontalHeaderLabels([类别, 置信度, 左上坐标, 右下坐标]) self.result_table.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.result_table.verticalHeader().setVisible(False) self.result_table.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows) self.result_table.setEditTriggers(QtWidgets.QAbstractItemView.NoEditTriggers) # 设置表格样式 self.result_table.setStyleSheet( QTableWidget { border: 1px solid #e0e0e0; alternate-background-color: #f5f5f5; } QHeaderView::section { background-color: #2196F3; color: white; padding: 5px; border: none; } QTableWidget::item { padding: 5px; } ) # 设置居中代理 delegate CenteredDelegate(self.result_table) self.result_table.setItemDelegate(delegate) self.table_layout.addWidget(self.result_table) self.table_group.setLayout(self.table_layout) self.right_layout.addWidget(self.table_group, stretch1) self.main_layout.addLayout(self.right_layout, stretch1) MainWindow.setCentralWidget(self.centralwidget) # 状态栏 self.statusbar QtWidgets.QStatusBar(MainWindow) self.statusbar.setStyleSheet(QStatusBar { border-top: 1px solid #c0c0c0; }) MainWindow.setStatusBar(self.statusbar) # 初始化变量 self.model None self.cap None self.timer QTimer() self.is_camera_running False self.current_image None self.current_result None self.video_writer None self.output_path output # 创建输出目录 if not os.path.exists(self.output_path): os.makedirs(self.output_path) # 连接信号槽 self.load_model_btn.clicked.connect(self.load_model) self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) self.conf_slider.valueChanged.connect(self.update_conf_value) self.iou_slider.valueChanged.connect(self.update_iou_value) self.timer.timeout.connect(self.update_camera_frame) # 设置全局样式 self.set_style() def set_style(self): style QMainWindow { background-color: #f5f5f5; } QGroupBox { border: 1px solid #e0e0e0; border-radius: 5px; margin-top: 10px; padding-top: 15px; } QGroupBox::title { subcontrol-origin: margin; left: 10px; padding: 0 3px; } QLabel { color: #333333; } QComboBox { padding: 5px; border: 1px solid #cccccc; border-radius: 3px; } QSlider::groove:horizontal { height: 6px; background: #e0e0e0; border-radius: 3px; } QSlider::handle:horizontal { width: 16px; height: 16px; margin: -5px 0; background: #2196F3; border-radius: 8px; } QSlider::sub-page:horizontal { background: #2196F3; border-radius: 3px; } self.centralwidget.setStyleSheet(style) def load_model(self): model_name self.model_combo.currentText().split( )[0] try: self.model YOLO(model_name) self.statusbar.showMessage(f模型 {model_name} 加载成功, 3000) self.image_btn.setEnabled(True) self.video_btn.setEnabled(True) self.camera_btn.setEnabled(True) except Exception as e: QMessageBox.critical(None, 错误, f模型加载失败: {str(e)}) def update_conf_value(self): conf self.conf_slider.value() / 100 self.conf_value.setText(f{conf:.2f}) def update_iou_value(self): iou self.iou_slider.value() / 100 self.iou_value.setText(f{iou:.2f}) def detect_image(self): if self.model is None: QMessageBox.warning(None, 警告, 请先加载模型) return file_path, _ QFileDialog.getOpenFileName( None, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp);;所有文件 (*) ) if file_path: try: # 读取图片 img cv2.imread(file_path) img cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 显示原始图片 self.display_image(img, self.original_img_label) self.current_image img.copy() # 检测图片 conf self.conf_slider.value() / 100 iou self.iou_slider.value() / 100 self.statusbar.showMessage(正在检测图片...) QtWidgets.QApplication.processEvents() # 更新UI results self.model.predict(img, confconf, iouiou) result_img results[0].plot() # 显示检测结果 self.display_image(result_img, self.result_img_label) self.current_result result_img.copy() # 更新结果表格 self.update_result_table(results[0]) self.save_btn.setEnabled(True) self.statusbar.showMessage(f图片检测完成: {os.path.basename(file_path)}, 3000) except Exception as e: QMessageBox.critical(None, 错误, f图片检测失败: {str(e)}) self.statusbar.showMessage(图片检测失败, 3000) def detect_video(self): if self.model is None: QMessageBox.warning(None, 警告, 请先加载模型) return file_path, _ QFileDialog.getOpenFileName( None, 选择视频, , 视频文件 (*.mp4 *.avi *.mov *.mkv);;所有文件 (*) ) if file_path: try: self.cap cv2.VideoCapture(file_path) if not self.cap.isOpened(): raise Exception(无法打开视频文件) # 获取视频信息 fps self.cap.get(cv2.CAP_PROP_FPS) width int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 创建视频写入器 timestamp datetime.datetime.now().strftime(%Y%m%d_%H%M%S) output_file os.path.join(self.output_path, foutput_{timestamp}.mp4) fourcc cv2.VideoWriter_fourcc(*mp4v) self.video_writer cv2.VideoWriter(output_file, fourcc, fps, (width, height)) # 启用停止按钮禁用其他按钮 self.stop_btn.setEnabled(True) self.save_btn.setEnabled(True) self.image_btn.setEnabled(False) self.video_btn.setEnabled(False) self.camera_btn.setEnabled(False) # 开始处理视频 self.timer.start(30) # 30ms间隔 self.statusbar.showMessage(f正在处理视频: {os.path.basename(file_path)}...) except Exception as e: QMessageBox.critical(None, 错误, f视频检测失败: {str(e)}) self.statusbar.showMessage(视频检测失败, 3000)七、项目源码(视频简介内)完整全部资源文件包括测试图片py文件训练数据集、训练代码、界面代码等这里已打包上传至博主的面包多平台见可参考博客与视频已将所有涉及的文件同时打包到里面点击即可运行完整文件截图如下演示与介绍视频基于深度学习YOLOv8的篮球运动员检测系统YOLOv8YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv8的篮球运动员检测系统YOLOv8YOLO数据集UI界面Python项目源码模型