陕西省建设信息网站大昌建设集团有限公司网站
2026/2/21 5:31:06 网站建设 项目流程
陕西省建设信息网站,大昌建设集团有限公司网站,qq网站在线登录网页版,响应试网站和移动端✅ 博主简介#xff1a;擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导#xff0c;毕业论文、期刊论文经验交流。✅成品或者定制#xff0c;扫描文章底部微信二维码。(1) 融合混沌映射与反向学习的旗鱼优化算法改进策略旗鱼优化算法在初始化阶段采用随机…✅博主简介擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导毕业论文、期刊论文经验交流。✅成品或者定制扫描文章底部微信二维码。(1) 融合混沌映射与反向学习的旗鱼优化算法改进策略旗鱼优化算法在初始化阶段采用随机生成种群的方式这种方式虽然简单易行但往往导致初始种群分布不均匀部分解空间未能得到有效覆盖从而影响算法后续的搜索效率和求解精度。为解决这一问题本研究引入Tent混沌映射来生成初始种群Tent映射具有遍历性强、分布均匀的特点能够使初始种群在搜索空间内呈现更加均衡的分布状态。具体实现过程中首先在解空间的边界范围内生成一个随机种子然后通过Tent映射的迭代公式不断产生新的混沌序列值将这些值映射到实际的决策变量范围内从而构建出初始旗鱼种群和沙丁鱼种群。在种群进化过程中为了进一步提升算法跳出局部最优的能力本研究将反向学习机制嵌入到旗鱼优化算法的位置更新环节。反向学习的核心思想是在当前解的基础上生成其反向解通过比较当前解与反向解的适应度值来选择更优的个体进入下一代种群。在每次迭代结束后对种群中一定比例的个体执行反向学习操作计算其关于搜索空间边界的反向位置若反向位置对应的适应度值优于原位置则用反向位置替换原位置。这种机制有效扩大了算法的搜索范围增加了发现全局最优解的概率。同时为了避免算法在迭代后期陷入停滞状态引入柯西变异算子对精英个体进行扰动处理柯西分布具有较长的尾部特征能够产生较大的变异步长帮助算法在收敛后期实现有效的跳跃式搜索。(2) 具有遗传特性的混沌自适应旗鱼优化算法设计针对标准旗鱼优化算法在处理复杂多峰函数时容易出现早熟收敛的问题本研究设计了一种融合遗传算法思想的混沌自适应旗鱼优化算法。该算法在保留旗鱼优化算法狩猎行为模拟框架的基础上引入选择、交叉和变异三种遗传操作来增强种群的多样性。在选择操作中采用锦标赛选择策略从当前种群中挑选优秀个体这种策略既保证了优良基因的传递又避免了过度选择压力导致的种群多样性丧失。交叉操作采用自适应交叉概率控制机制在迭代初期设置较高的交叉概率以促进种群间的信息交换在迭代后期逐步降低交叉概率以保护已发现的优质解结构。在算法参数的自适应调节方面本研究设计了基于迭代进程的攻击系数动态调整策略。攻击系数是控制旗鱼向沙丁鱼逼近速度的关键参数传统算法采用固定的线性递减方式无法根据种群的实际进化状态进行灵活调整。改进后的自适应攻击系数综合考虑当前迭代次数、种群平均适应度变化率以及最优个体适应度改进幅度等因素当种群整体适应度提升较快时适当减小攻击系数以加强局部精细搜索当种群适应度停滞不前时增大攻击系数以扩大搜索范围寻找新的有利区域。此外在沙丁鱼位置更新公式中引入Logistic混沌扰动项使沙丁鱼在躲避旗鱼攻击时产生更加多样化的逃逸路径从而带动整个种群在解空间中进行更充分的探索。(3) 面向化工动态优化问题的离散化求解方法化工生产过程中存在大量的动态优化问题如批式反应器的最优温度控制、连续搅拌反应釜的最优进料策略等这些问题的目标是寻找随时间变化的最优控制轨迹以使某个性能指标达到最优。本研究将改进的旗鱼优化算法与控制向量参数化方法相结合形成一套完整的化工动态优化求解框架。控制向量参数化的基本思想是将连续的控制变量时域划分为若干离散区间在每个区间内用特定的基函数来近似表示控制变量的变化规律从而将无限维的动态优化问题转化为有限维的参数优化问题。import numpy as np from scipy.integrate import odeint class ImprovedSailfishOptimizer: def __init__(self, obj_func, dim, pop_size50, max_iter500, lb-100, ub100): self.obj_func obj_func self.dim dim self.pop_size pop_size self.sardine_size pop_size * 2 self.max_iter max_iter self.lb lb self.ub ub def tent_chaos_init(self, size): population np.zeros((size, self.dim)) x np.random.rand(self.dim) for i in range(size): x np.where(x 0.5, 2 * x, 2 * (1 - x)) population[i] self.lb x * (self.ub - self.lb) return population def opposition_learning(self, position): return self.lb self.ub - position def cauchy_mutation(self, position, scale0.1): cauchy_noise np.random.standard_cauchy(self.dim) * scale new_position position cauchy_noise return np.clip(new_position, self.lb, self.ub) def logistic_chaos(self, x, mu4.0): return mu * x * (1 - x) def adaptive_attack_coefficient(self, t, fitness_improvement): base_coef 2 * (1 - t / self.max_iter) adaptive_factor 1 / (1 np.exp(-fitness_improvement * 10)) return base_coef * adaptive_factor def optimize(self): sailfish self.tent_chaos_init(self.pop_size) sardines self.tent_chaos_init(self.sardine_size) sf_fitness np.array([self.obj_func(ind) for ind in sailfish]) sd_fitness np.array([self.obj_func(ind) for ind in sardines]) best_idx np.argmin(sf_fitness) elite sailfish[best_idx].copy() elite_fitness sf_fitness[best_idx] injured_sardine sardines[np.argmax(sd_fitness)].copy() convergence [] prev_elite_fitness elite_fitness for t in range(self.max_iter): fitness_improvement (prev_elite_fitness - elite_fitness) / (abs(prev_elite_fitness) 1e-10) A self.adaptive_attack_coefficient(t, fitness_improvement) prev_elite_fitness elite_fitness PD 1 - len(sailfish) / (len(sailfish) len(sardines)) for i in range(self.pop_size): r np.random.rand() chaos_factor self.logistic_chaos(np.random.rand()) if r PD: sailfish[i] elite - A * (np.random.rand(self.dim) * (elite injured_sardine) / 2 - sailfish[i]) else: sailfish[i] elite - A * np.random.rand(self.dim) * chaos_factor sailfish[i] np.clip(sailfish[i], self.lb, self.ub) for i in range(self.sardine_size): if np.random.rand() 0.5: sardines[i] sardines[i] - A * np.random.rand(self.dim) * (elite - sardines[i] 0.01) sardines[i] np.clip(sardines[i], self.lb, self.ub) sf_fitness np.array([self.obj_func(ind) for ind in sailfish]) sd_fitness np.array([self.obj_func(ind) for ind in sardines]) if np.random.rand() 0.3: opp_idx np.random.randint(0, self.pop_size) opp_solution self.opposition_learning(sailfish[opp_idx]) opp_solution np.clip(opp_solution, self.lb, self.ub) opp_fitness self.obj_func(opp_solution) if opp_fitness sf_fitness[opp_idx]: sailfish[opp_idx] opp_solution sf_fitness[opp_idx] opp_fitness if t self.max_iter * 0.7: mutant self.cauchy_mutation(elite, scale0.05 * (self.ub - self.lb)) mutant_fitness self.obj_func(mutant) if mutant_fitness elite_fitness: elite mutant elite_fitness mutant_fitness current_best_idx np.argmin(sf_fitness) if sf_fitness[current_best_idx] elite_fitness: elite sailfish[current_best_idx].copy() elite_fitness sf_fitness[current_best_idx] injured_sardine sardines[np.argmax(sd_fitness)].copy() convergence.append(elite_fitness) return elite, elite_fitness, convergence def sphere_function(x): return np.sum(x ** 2) def rastrigin_function(x): return 10 * len(x) np.sum(x ** 2 - 10 * np.cos(2 * np.pi * x)) def chemical_reactor_dynamics(y, t, u, params): Ca, T y Ca0, T0, k0, E, rho, Cp, deltaH, UA, V params F u[0] Tc u[1] k k0 * np.exp(-E / (8.314 * T)) dCa F / V * (Ca0 - Ca) - k * Ca dT F / V * (T0 - T) (-deltaH) / (rho * Cp) * k * Ca UA / (V * rho * Cp) * (Tc - T) return [dCa, dT] if __name__ __main__: optimizer ImprovedSailfishOptimizer(sphere_function, dim30, pop_size40, max_iter300) best_solution, best_fitness, history optimizer.optimize() print(fBest fitness: {best_fitness}) print(fBest solution: {best_solution[:5]}...)如有问题可以直接沟通

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询