可以拔下来做的网站吗境外网站可以备案吗
2026/1/10 13:01:11 网站建设 项目流程
可以拔下来做的网站吗,境外网站可以备案吗,人力资源管理就业方向,网页logo设计图片博主介绍#xff1a;✌全网粉丝10W,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久#xff0c;选择我们就是选择放心、选择安心毕业✌ #x1f345;想要获取完整文章或者源码#xff0c;或者代做#xff0c;拉到文章底部即可与…博主介绍✌全网粉丝10W,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久选择我们就是选择放心、选择安心毕业✌ 想要获取完整文章或者源码或者代做拉到文章底部即可与我联系了。点击查看作者主页了解更多项目感兴趣的可以先收藏起来点赞、关注不迷路大家在毕设选题项目以及论文编写等相关问题都可以给我留言咨询希望帮助同学们顺利毕业 。1、毕业设计2026年计算机专业毕业设计选题汇总建议收藏✅2、大数据毕业设计2026年选题大全 深度学习 python语言 JAVA语言 hadoop和spark建议收藏✅1、项目介绍一、开发技术pycharm、MySQL数据库/sqlite3数据库、Python3.x版本、Django框架二、说明基于用户画像以及协同过滤的音乐推荐系统UserProfile_MusicRecommend1.将基于用户的协同过滤算法与用户画像 相结合进行推荐提高推荐列表数据的成熟度。2.系统在Windows平台上搭建采用Python3实现各项功能采取MySQL/sqlite3进行数据的存储通过Django框架连接系统的前、后端。3.使用的数据集为kaggle平台上kkbox举办的—KKBox’s Music Recommendation Challenge比赛的公开数据集数据集采用公开数据集Last.fm Dataset-360K Users数据集kkbox是亚洲领先的音乐流媒体服务提供商拥有世界上最全面的亚洲流行音乐库拥有超过3000万首音乐曲目。4.针对数据集使用SVD矩阵分解进行相似相关度的计算分析根据已有的评分情况分析出评分者对各个因子的喜好程度以及歌曲包含各个因子的程度最后再反过来根据分析结果预测评分根据评分的结果生成推荐列表。2、算法说明基于用户的协同过滤推荐算法python音乐推荐系统 协同过滤推荐算法 django框架MySQL数据库2、项目界面1系统首页2 播放、喜欢、不喜欢、收藏等等3音乐播放4登录后选择标签5后台管理6注册登录3、项目说明摘 要随着我国互联网技术的飞速发展信息量开始迅速猛增在音乐方面传统的实体专辑远远不如网络数字音乐的发展迅猛。如今网络上新歌层出不穷面对成千上万还没有听过的歌曲用户想要从中找出自己喜欢的歌曲太过困难也会浪费太多的时间。依靠传统的搜索方式来寻找自己感兴趣的歌曲已经无法满足用户的需求个性化的推荐系统应运而生。协同过滤算法因其实现简单、方便应用到产品中等特点在推荐系统中被广泛使用而本文主要讨论的是协同过滤算法中的基于用户的算法。系统会依据用户对歌曲的一些操作行为比如将喜欢的歌曲加入收藏的歌单等等然后使用基于用户的协同过滤推荐算法找出与想推荐用户相类似的邻居用户通过分析邻居用户有没有某音乐产生兴趣偏好从而预测目标用户可能感兴趣的歌曲进行个性化的推荐这样用户在选择判断的时候能减少很多的时间也可以解决一些用户的选择困难症优化用户的听歌体验。本文的数据集是Last.fm Dataset 歌曲数据集研究的项目是基于Python 语言开发采用Python3实现各项功能采取sqlite3数据库进行数据的存储通过Django框架连接系统的前、后端。关键词 音乐推荐系统协同过滤算法 Python编程技术sqlite3数据库多媒体数字技术的不断发展和应用使得数字音乐越来越受到大众的欢迎与以往的CD、唱片等实体专辑相比数字音乐更加经济方便受到了大众的喜爱。因此移动音乐和在线音乐得到了快速发展。这些音乐平台向用户提供了成千上万的歌曲供用户使用然而现在网络上新歌也层出不穷本就非常庞大的音乐库也变得越来越大用户想要从这些没有听过的歌曲中找出自己喜欢的歌曲太过的困难也会耗费大量的时间精力。本系统的设计初衷正是为了解决这些问题帮助用户在选择判断的时候减少不必要的时间也可以解决一些用户的选择困难症优化用户的听歌体验本系统使用的是协同过滤算法中的基于用户的协同过滤推荐算法系统通过收集目标用户的收藏喜欢的歌曲下载歌曲等行为数据运用该算法找出与目标用户类似的邻居用户通过其他相似用户的信息分析并推测出目标用户的潜在喜好和可能感兴趣的歌曲主动向目标用户推荐。同时由于该项目仅是个人的研究不会应用于实际能收集到的用户数据有限而基于用户的协同过滤推荐算法正好比较适用于用户数据较少的情况。除此之外如果相似用户给出了其他的新的反馈信息系统也能利用这一点从而提高个性化推荐的效率。4、核心代码login_required(login_url/sign_in)cold_bootdefrecommend(request):page_numberrequest.GET.get(page,1)recommend_setbuild_recommend(request,request.user)paginatorPaginator(recommend_set,20)musicspaginator.page(page_number)context{musics:musics,user_likes:[],user_dislikes:[]}user_profileUserProfile.objects.filter(userrequest.user)ifuser_profile.exists():user_profileuser_profile.first()context[user_likes]user_profile.likes.all()context[user_dislikes]user_profile.dislikes.all()returnrender(request,list.html,context)login_required(login_url/sign_in)deflike(request,pk:int):user_objUserProfile.objects.get(userrequest.user)music_objget_object_or_404(Music.objects.all(),pkpk)user_obj.likes.add(music_obj)user_obj.dislikes.remove(music_obj)messages.add_message(request,messages.INFO,已经添加到我喜欢)redirect_urlrequest.GET.get(from,/)ifactioninrequest.GET:redirect_urlfaction{request.GET[action]}returnHttpResponseRedirect(redirect_url)login_required(login_url/sign_in)defdislike(request,pk:int):user_objUserProfile.objects.get(userrequest.user)music_objget_object_or_404(Music.objects.all(),pkpk)user_obj.dislikes.add(music_obj)user_obj.likes.remove(music_obj)messages.add_message(request,messages.INFO,已经添加到我不喜欢)redirect_urlrequest.GET.get(from,/)ifactioninrequest.GET:redirect_urlfaction{request.GET[action]}returnHttpResponseRedirect(redirect_url)defplay(request,pk:int0):globalcurrent_playifpk0:music_objMusic.objects.filter(pkpk)ifmusic_obj.exists():current_playmusic_obj.first()ifcurrent_playisNone:messages.error(request,当前没有正在播放的音乐)returnHttpResponseRedirect(/)returnrender(request,play.html,context{music:current_play})login_required(login_url/sign_in)defuser_center(request):user_profileUserProfile.objects.filter(userrequest.user)ifuser_profile.exists():profile_obj:UserProfileuser_profile.first()else:messages.error(request,找不到用户资料请重新登录)logout(request)returnHttpResponseRedirect(/)ifrequest.methodPOST:genresrequest.POST.getlist(genres,)languagesrequest.POST.getlist(languages,)profile_obj.first_runFalseiflen(genres)0:profile_obj.genre_subscribe,.join(genres)profile_obj.save()messages.success(request,修改流派订阅成功)elifnotprofile_obj.first_run:profile_obj.genre_subscribeprofile_obj.save()messages.success(request,修改流派订阅成功)iflen(languages)0:profile_obj.language_subscribe,.join(languages)profile_obj.save()messages.success(request,修改语言订阅成功)elifnotprofile_obj.first_run:profile_obj.language_subscribeprofile_obj.save()messages.success(request,修改语言订阅成功)context{user_likes:profile_obj.likes.all(),user_dislikes:profile_obj.dislikes.all(),genres:build_genre_ids(),languages:build_languages(),genre_subscribe:profile_obj.genre_subscribe.split(,),language_subscribe:[]}# 去除空字符forlanginprofile_obj.language_subscribe.split(,):langlang.strip()context[language_subscribe].append(lang)returnrender(request,user.html,contextcontext)defsearch(request):ifkeywordnotinrequest.GET:messages.error(request,请输入搜索关键词)returnHttpResponseRedirect(/)keywordrequest.GET.get(keyword)actionrequest.GET.get(action)musics[]ifactionsong_name:musicsMusic.objects.filter(song_name__containskeyword)ifactionartist_name:musicsMusic.objects.filter(artist_name__containskeyword)messages.info(request,f搜索关键词{keyword}找到{len(musics)}首音乐)context{musics:musics,user_likes:[],user_dislikes:[]}ifrequest.user.is_authenticated:user_profileUserProfile.objects.filter(userrequest.user)ifuser_profile.exists():user_profileuser_profile.first()context[user_likes]user_profile.likes.all()context[user_dislikes]user_profile.dislikes.all()returnrender(request,list.html,context)5、源码获取方式由于篇幅限制获取完整文章或源码、代做项目的查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦感兴趣的可以先收藏起来点赞、关注不迷路下方查看获取联系方式

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询