有口碑的徐州网站开发网站适合移动端
2026/2/14 15:36:34 网站建设 项目流程
有口碑的徐州网站开发,网站适合移动端,建设厅培训中心网站,响应式网页设计总结一、项目介绍 摘要 本项目基于YOLOv10目标检测算法#xff0c;开发了一套专门针对Apex Legends#xff08;Apex英雄#xff09;游戏中人物与物体的识别检测系统。系统通过对游戏画面进行实时分析#xff0c;能够准确识别游戏中的玩家角色#xff08;avatar#xff09;和…一、项目介绍摘要本项目基于YOLOv10目标检测算法开发了一套专门针对Apex LegendsApex英雄游戏中人物与物体的识别检测系统。系统通过对游戏画面进行实时分析能够准确识别游戏中的玩家角色avatar和各种游戏物体object为游戏AI开发、战术分析、辅助工具制作等应用场景提供技术支持。项目使用自定义收集的Apex游戏数据集进行训练和验证包含训练集2583张、验证集691张和测试集415张图像共计3689张标注图像。经过优化的YOLOv10模型在该数据集上表现出色能够满足实时游戏分析的需求。项目意义游戏AI开发为Apex Legends游戏AI提供视觉感知能力使AI能够像人类玩家一样看到游戏世界中的其他玩家和物体。战术分析与训练可用于职业战队的战术分析通过自动识别游戏中的关键元素帮助玩家提高游戏理解和战术意识。辅助工具开发作为游戏辅助工具的基础视觉模块可用于开发合法的游戏增强工具如信息显示、态势感知等。计算机视觉研究为游戏场景下的目标检测提供专门的研究案例和数据集推动特定领域计算机视觉技术的发展。教育价值作为一个完整的计算机视觉项目案例可用于教学展示帮助学生理解从数据收集到模型部署的全流程。目录一、项目介绍摘要项目意义二、项目功能展示系统功能图片检测视频检测摄像头实时检测三、数据集介绍数据集概述数据集特点数据集配置文件数据集制作流程四、项目环境配置创建虚拟环境pycharm中配置anaconda安装所需要库五、模型训练训练代码训练结果六、核心代码七、项目源码视频下方简介内基于深度学习YOLOv10的Apex游戏人物识别检测系统YOLOv10YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv10的Apex游戏人物识别检测系统YOLOv10YOLO数据集UI界面Python项目源码模型二、项目功能展示系统功能✅图片检测可对图片进行检测返回检测框及类别信息。✅视频检测支持视频文件输入检测视频中每一帧的情况。✅摄像头实时检测连接USB 摄像头实现实时监测。✅参数实时调节置信度和IoU阈值图片检测该功能允许用户通过单张图片进行目标检测。输入一张图片后YOLO模型会实时分析图像识别出其中的目标并在图像中框出检测到的目标输出带有目标框的图像。视频检测视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示适用于视频监控和分析等场景。摄像头实时检测该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用提供即时反馈。核心特点高精度基于YOLO模型提供精确的目标检测能力适用于不同类型的图像和视频。实时性特别优化的算法使得实时目标检测成为可能无论是在视频还是摄像头实时检测中响应速度都非常快。批量处理支持高效的批量图像和视频处理适合大规模数据分析。三、数据集介绍数据集概述本项目的核心是专门为Apex Legends游戏定制的目标检测数据集包含以下组成部分训练集2583张游戏截图用于模型训练验证集691张游戏截图用于训练过程中的模型评估和超参数调整测试集415张游戏截图用于最终模型性能评估数据集共包含两个类别avatar游戏中的玩家角色包括各种传奇角色及其皮肤变体object游戏中的各类物体如武器、弹药、装备、门、补给箱等数据集特点多样性数据集涵盖了Apex Legends游戏中的多种地图、光照条件和游戏场景确保模型在各种环境下都能稳定工作。挑战性包含游戏特有的挑战因素如快速移动的目标复杂的光影效果如技能特效、枪口闪光不同距离的目标从近距离战斗到远距离狙击各种视角第一人称和第三人称标注质量所有图像都经过专业标注边界框精确贴合目标物体并经过多人校验确保标注准确性。类别平衡虽然游戏场景中avatar和object的出现频率自然不平衡但通过数据收集策略尽量保持了类别的合理分布。数据集配置文件数据集采用YOLO格式train: F:\Apex游戏人物识别检测数据集\train\images val: F:\Apex游戏人物识别检测数据集\valid\images test: F:\Apex游戏人物识别检测数据集\test\images nc: 2 names: [avatar, object]数据集制作流程数据收集通过游戏内截图功能或采集卡录制Apex Legends游戏画面涵盖多种地图世界边缘、奥林匹斯、风暴点等包含各种游戏模式排位赛、普通匹配、训练场确保不同时间段白天/夜晚地图和天气条件数据筛选去除模糊、重复或信息量低的图像确保画面中包含至少一个可识别目标保持画面分辨率和质量的一致性数据标注使用LabelImg或CVAT等标注工具进行边界框标注对avatar类别标注完整的角色轮廓包括武器对object类别根据实际用途和大小进行合理标注对部分遮挡的目标进行合理估计标注数据增强应用色彩抖动模拟不同显示设置添加模糊效果模拟快速移动调整亮度和对比度模拟不同光照条件但不使用可能改变游戏UI元素的增强方式数据集划分按照约70%训练、20%验证、10%测试的比例随机划分确保各子集中地图和场景类型的分布均衡避免同一游戏片段的连续帧出现在不同子集质量验证多人交叉检查标注准确性验证边界框是否紧密贴合目标检查类别标签是否正确确保没有遗漏明显目标四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov10 python3.9激活虚拟环境conda activate yolov10安装cpu版本pytorchpip install torch torchvision torchaudiopycharm中配置anaconda安装所需要库pip install -r requirements.txt五、模型训练训练代码from ultralytics import YOLOv10 model_path yolov10s.pt data_path datasets/data.yaml if __name__ __main__: model YOLOv10(model_path) results model.train(datadata_path, epochs500, batch64, device0, workers0, projectruns/detect, nameexp, )根据实际情况更换模型 yolov10n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 yolov10s.yaml (small)小模型适合实时任务。 yolov10m.yaml (medium)中等大小模型兼顾速度和精度。 yolov10b.yaml (base)基本版模型适合大部分应用场景。 yolov10l.yaml (large)大型模型适合对精度要求高的任务。--batch 64每批次64张图像。--epochs 500训练500轮。--datasets/data.yaml数据集配置文件。--weights yolov10s.pt初始化模型权重yolov10s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog from PyQt5.QtCore import QThread, pyqtSignal from ultralytics import YOLOv10 from UiMain import UiMainWindow import time import os class DetectionThread(QThread): frame_received pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果 finished_signal pyqtSignal() # 线程完成信号 def __init__(self, model, source, conf, iou, parentNone): super().__init__(parent) self.model model self.source source self.conf conf self.iou iou self.running True def run(self): try: if isinstance(self.source, int) or self.source.endswith((.mp4, .avi, .mov)): # 视频或摄像头 cap cv2.VideoCapture(self.source) while self.running and cap.isOpened(): ret, frame cap.read() if not ret: break # 保存原始帧 original_frame frame.copy() # 检测 results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) # 发送信号 self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) # 控制帧率 time.sleep(0.03) # 约30fps cap.release() else: # 图片 frame cv2.imread(self.source) if frame is not None: original_frame frame.copy() results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) except Exception as e: print(fDetection error: {e}) finally: self.finished_signal.emit() def stop(self): self.running False class MainWindow(UiMainWindow): def __init__(self): super().__init__() # 初始化模型 self.model None self.detection_thread None self.current_image None self.current_result None self.video_writer None self.is_camera_running False self.is_video_running False self.last_detection_result None # 新增保存最后一次检测结果 # 连接按钮信号 self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) # 初始化模型 self.load_model() def load_model(self): try: model_name self.model_combo.currentText() self.model YOLOv10(f{model_name}.pt) # 自动下载或加载本地模型 self.update_status(f模型 {model_name} 加载成功) except Exception as e: QMessageBox.critical(self, 错误, f模型加载失败: {str(e)}) self.update_status(模型加载失败) def detect_image(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp)) if file_path: self.clear_results() self.current_image cv2.imread(file_path) self.current_image cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB) self.display_image(self.original_image_label, self.current_image) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测图片: {os.path.basename(file_path)}) def detect_video(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择视频, , 视频文件 (*.mp4 *.avi *.mov)) if file_path: self.clear_results() self.is_video_running True # 初始化视频写入器 cap cv2.VideoCapture(file_path) frame_width int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps cap.get(cv2.CAP_PROP_FPS) cap.release() # 创建保存路径 save_dir results os.makedirs(save_dir, exist_okTrue) timestamp time.strftime(%Y%m%d_%H%M%S) save_path os.path.join(save_dir, fresult_{timestamp}.mp4) fourcc cv2.VideoWriter_fourcc(*mp4v) self.video_writer cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height)) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测视频: {os.path.basename(file_path)}) def detect_camera(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return self.clear_results() self.is_camera_running True # 创建检测线程 (默认使用摄像头0) conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, 0, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(正在从摄像头检测...) def stop_detection(self): if self.detection_thread and self.detection_thread.isRunning(): self.detection_thread.stop() self.detection_thread.quit() self.detection_thread.wait() if self.video_writer: self.video_writer.release() self.video_writer None self.is_camera_running False self.is_video_running False self.update_status(检测已停止) def on_frame_received(self, original_frame, result_frame, detections): # 更新原始图像和结果图像 self.display_image(self.original_image_label, original_frame) self.display_image(self.result_image_label, result_frame) # 保存当前结果帧用于后续保存 self.last_detection_result result_frame # 新增保存检测结果 # 更新表格 self.clear_results() for class_name, confidence, x, y in detections: self.add_detection_result(class_name, confidence, x, y) # 保存视频帧 if self.video_writer: self.video_writer.write(cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR)) def on_detection_finished(self): if self.video_writer: self.video_writer.release() self.video_writer None self.update_status(视频检测完成结果已保存) elif self.is_camera_running: self.update_status(摄像头检测已停止) else: self.update_status(图片检测完成) def save_result(self): if not hasattr(self, last_detection_result) or self.last_detection_result is None: QMessageBox.warning(self, 警告, 没有可保存的检测结果) return save_dir results os.makedirs(save_dir, exist_okTrue) timestamp time.strftime(%Y%m%d_%H%M%S) if self.is_camera_running or self.is_video_running: # 保存当前帧为图片 save_path os.path.join(save_dir, fsnapshot_{timestamp}.jpg) cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f截图已保存: {save_path}) else: # 保存图片检测结果 save_path os.path.join(save_dir, fresult_{timestamp}.jpg) cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f检测结果已保存: {save_path}) def closeEvent(self, event): self.stop_detection() event.accept() if __name__ __main__: app QApplication(sys.argv) # 设置应用程序样式 app.setStyle(Fusion) # 创建并显示主窗口 window MainWindow() window.show() sys.exit(app.exec_())七、项目源码视频下方简介内完整全部资源文件包括测试图片、视频py文件训练数据集、训练代码、界面代码等这里已打包上传至博主的面包多平台见可参考博客与视频已将所有涉及的文件同时打包到里面点击即可运行完整文件截图如下基于深度学习YOLOv10的Apex游戏人物识别检测系统YOLOv10YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv10的Apex游戏人物识别检测系统YOLOv10YOLO数据集UI界面Python项目源码模型

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询