2025/12/28 17:14:08
网站建设
项目流程
网站建站平台 开源,传媒建设网站,wordpress支付宝网页支付宝,成都画时网站建设《Nature》旗下期刊发表了一篇极具深度的社论#xff1a;《Writing is thinking》#xff08;写作即思考#xff09;。 这篇论文在 AI 圈和学术圈引起了巨大轰动。有人说这是在“劝退”AI 写作#xff0c;但在我看来#xff0c;这恰恰是为我们所有“学术 AI 玩家”指明了最…《Nature》旗下期刊发表了一篇极具深度的社论《Writing is thinking》写作即思考。这篇论文在 AI 圈和学术圈引起了巨大轰动。有人说这是在“劝退”AI 写作但在我看来这恰恰是为我们所有“学术 AI 玩家”指明了最高级的进阶方向。下面带你看看顶刊眼中的“人机协作终极形态”。一、 误区纠正AI 不是用来“偷懒”的是用来“增强”的《Nature》社论开篇就击中了一个核心痛点“Writing compels us to think... in a structured, intentional manner.”写作强迫我们思考——以结构化、有目的的方式。很多同学用 AI 的姿势是“甩手掌柜”——把数据扔进去指望它吐出一篇完美论文。结果呢得到的往往是逻辑平庸、甚至有硬伤的“缝合怪”。为什么因为写作过程本身就是你将多年的研究数据、分析结果整理成一个实际故事的过程是你确定主要信息和工作影响力的关键时刻。如果你完全跳过这一步你其实就放弃了科研中最核心的“认知升级”机会。即使是我们开发的 AI 工具初衷也绝不是“替代”你的思考而是“卸载”那些低价值的重复劳动。AI 是你的“外脑”和“副驾驶”但方向盘逻辑主线必须握在你自己手里。二、 警惕陷阱通用大模型的“一本正经胡说八道”《Nature》发出的严厉警告主要针对的是通用大模型General LLMs“LLM-generated text needs to be thoroughly checked... including every reference as it might be made up.”LLM生成的文本需要彻底检查...包括每一个参考文献因为它可能是编造的。因此不要直接用 ChatGPT 写论文的正文和引用通用模型不仅缺乏问责制还容易产生“幻觉”Hallucination。对于科研这种容错率极低的工作这种风险是致命的。 解决方案AI最擅长的是做「阅读理解」。因此你可以尝试「投喂」学术论文。让它给你进行总结或者是和它讨论未来可能的创新方向。千万不要企图让AI帮你实现从0-1。你要掌控AI你是「驾驶员」。三、 效率悖论那是你没用对方法论文中提到一个有趣的观点“It might be more difficult and time-consuming to edit an LLM-generated text than to write from scratch.”修改 AI 生成的文本可能比从头写更费劲。如果你指望 AI 一键生成 Perfect Paper那你确实会陷入无尽的“改Bug”地狱因为你需要理解其推理才能进行编辑。但如果你掌握了“模块化协作”的方法效率将是指数级提升。这就好比你去修缮一座地基不稳的“危房”其成本往往高于平地起高楼。如果我们失去了对内容的掌控力仅仅充当 AI 的“校对员”那么我们实际上是在阅读 AI 的想法而非表达研究者自己的洞见 。《Nature》认可的 AI 用法克服写作障碍Writers Block看着空白文档发呆让 AI 帮你集思广益提供切入点或替代解释激发灵感。语言润色Polishing对于像我们这样的 ESL非母语研究者AI 是最好的润色专家能极大提升可读性和语法。信息处理Summarizing让 AI 帮你总结多样化的科学文献提供要点协助头脑风暴。四、 终极心法做“半人马”科学家Centaur Scientist“半人马”Centaur这个概念源自国际象棋界指的是人类棋手与AI程序协作最终能打败纯人类或纯AI的策略。未来的顶尖学者一定是“懂科研的人类大脑 强悍的 AI 工具”的结合体。《Nature》这篇社论其实是在划定“人机边界”人类负责反思领域、构建引人入胜的叙事、承担问责。AI 负责语法清洗、文献摘要、发散性头脑风暴。 总结人类你战略家与把关人作为人类你必须聚焦于战略、伦理和创新。这意味着你需要设定研究方向和目标。进行伦理判断和最终决策。构建引人入胜的叙事架构提供创造性见解和抽象思维。承担问责制Accountability并对全流程进行人工审核和多轮修正。AI工具效率的执行官AI 的核心价值在于“卸载”重复劳动和“加速”信息处理。它可以帮你加速数据分析快速识别复杂模式。高效处理内容进行语法清洗、提升可读性、生成文献摘要。辅助创作 生成基础的故事框架、提供要点Bullet Points甚至帮你克服写作障碍。总结:驾驭AI而非回避不要因为《Nature》的警告就因噎废食不敢用 AI。恰恰相反这说明学术界正在认真审视 AI 的地位——它不再是玩具而是需要严肃对待的生产力工具。原文On the value of human-generated scientific writing in the age of large-language models.Writing scientific articles is an integral part of the scientific method and common practice to communicate research findings. However, writing is not only about reporting results; it also provides a tool to uncover new thoughts and ideas. Writing compels us to think — not in the chaotic, non-linear way our minds typically wander, but in a structured, intentional manner. By writing it down, we can sort years of research, data and analysis into an actual story, thereby identifying our main message and the influence of our work. This is not merely a philosophical observation; it is backed by scientific evidence. For example, handwriting can lead to widespread brain connectivity1 and has positive effects on learning and memory.This is a call to continue recognizing the importance of human-generated scientific writing.“This is a call to continue recognizing the importance of human-generated scientific writing”This call may seem anachronistic in the age of large-language models (LLMs), which, with the right prompts, can create entire scientific articles2 (and peer-review reports3) in a few minutes, seemingly saving time and effort in getting results out once the hard research work is done. However, LLMs are not considered authors as they lack accountability, and thus, we would not consider publishing manuscripts written entirely by LLMs (using LLMs for copy-editing is allowed but should be declared). Importantly, if writing is thinking, are we not then reading the ‘thoughts’ of the LLM rather than those of the researchers behind the paper?Current LLMs might also be wrong, a phenomenon called hallucination4. Therefore, LLM-generated text needs to be thoroughly checked and verified (including every reference as it might be made up5). It thus remains questionable how much time current LLMs really save. It might be more difficult and time-consuming to edit an LLM-generated text than to write an article or peer-review report from scratch, partly because one needs to understand the reasoning to be able to edit it. Some of these issues might be addressed by LLMs trained only on scientific databases, such as those outlined in a Review article by Fenglin Liu and team in this issue. Time will tell.All that is not to say LLMs cannot serve as valuable tools in scientific writing. For example, LLMs can aid in improving readability and grammar, which might be particularly useful to those for which English is not their first language. LLMs might also be valuable for searching and summarizing diverse scientific literature6, and they can provide bullet points and assist in the brainstorming of ideas. In addition, LLMs can be beneficial in overcoming writer’s block, provide alternative explanations for findings or identify connections between seemingly unrelated subjects, thereby sparking new ideas.Nevertheless, outsourcing the entire writing process to LLMs may deprive us of the opportunity to reflect on our field and engage in the creative, essential task of shaping research findings into a compelling narrative — a skill that is certainly important beyond scholarly writing and publishing.