2026/1/16 6:53:55
网站建设
项目流程
泰安一级的企业建站公司,网站服务器怎么更换,wordpress添加链接,网站外包一般多少钱啊文章介绍了RAG技术的演进#xff0c;从传统RAG到多模态、Agent和Graph RAG。传统RAG仅处理文本#xff0c;多模态RAG扩展到图像、音频等数据#xff1b;Agent RAG引入智能体实现自主决策#xff1b;Graph RAG利用知识图谱增强推理。文章探讨了这些技术在智能客服、健康诊疗…文章介绍了RAG技术的演进从传统RAG到多模态、Agent和Graph RAG。传统RAG仅处理文本多模态RAG扩展到图像、音频等数据Agent RAG引入智能体实现自主决策Graph RAG利用知识图谱增强推理。文章探讨了这些技术在智能客服、健康诊疗等场景的应用并指出未来融合多种RAG技术将是趋势。传统RAG传统RAG(Retrieval-Augmented Generation检索增强生成)通过外挂知识库的方式降低大模型幻觉解决了大模型即使不通过微调也可以使大模型具备专业的领域知识, 是最早期出现的RAG架构。传统 RAG 核心流程索引构建将原始文档转换成向量, 存储至向量数据库。这个阶段一般包含文档清洗(去重,降噪,脱敏等)→切块chunk→向量化embedding→入库(FAISS/Milvus/ pgvector等向量数据库)四大步骤处理。查询阶段根据用户输入, 去向量数据库检索出相关信息。生成阶段文本信息与LLM结合生成—-将检索出的信息与原始的用户输入交给大模型引导模型输出更准确的答案。传统 RAG 的局限性仅能处理纯文本数据无法识别图像中的视觉信息(如产品图片的细节、图表中的数据关系)、音频中的语音内容(如会议录音的关键观点)知识库多为静态知识库如果知识更新需要重新构建索引embedding处理;通常只是进行一轮的知识库检索并且将检索的结果与原始提示词进行简单拼接后直接提交给大模型进行生成结果。当输入为非文本(如用户上传一张故障图片并提问 “这是什么问题”)时传统RAG 完全无法响应只能依赖LLM的 “幻觉性猜测”。总结检索→拼接→生成适用于简单的企业内部各类知识问答场景。传统 RAG单模态的升级多模态RAG(Multimodal RAG)在传统 RAG仅聚焦文本数据的基础上,多模态RAG(Multimodal RAG)将检索范围扩展到文本、图像、音频、视频、表格等多种类型的数据通过统一的技术框架实现 “跨模态检索-多源信息融合-精准生成” 的闭环解决了传统RAG无法处理非文本信息的核心痛点更贴合真实世界中 “多模态信息共存” 的场景需求(如产品手册含图文、医疗报告含影像与文字、社交媒体含视频与文案等)。要理解多模态RAG需先明确其与传统RAG的核心差异——本质是“数据维度”与“处理逻辑”的扩展而非对RAG核心流程的颠覆。多模态RAG是“检索增强生成”与“多模态学习” 的融合技术 核心目标让LLM不仅能基于文本知识回答还能结合图像、音频等非文本知识,生成更全面、更精准的多模态响应(如回答时附图表解释、生成含文字说明的图像)关键特征支持 “跨模态输入 - 跨模态检索 - 跨模态生成”例如输入一张 “手机屏幕碎裂” 的图片 文字提问 “维修需要哪些配件”检索同时从“维修手册文本库”中找“屏幕维修流程”、从“配件图片库”中找“适配屏幕型号图”生成文字说明“需更换屏幕总成背光板”并附配件图片与安装步骤示意图。总结将文本图片/表格/音频/视频/图纸等都纳入检索与理解。Agentic RAGAgentic RAG(代理式检索增强生成)是将AI代理引入RAG流程的技术,通过动态规划、工具调用和迭代优化解决传统RAG的局限性。 传统的RAG,信息检索只是一个必须而又被动的检索步骤,是大模型回答前必须的一个前置检索步骤,用于给大模型回答提供炮弹。而Agentic RAG相当于在传统RAG的基础上, 引入了智能体(Agent)的概念, 使检索过程更加智能化和自主化。根据用户的需求Agentic RAG可以决定是否需要检索、何时进行检索、如何利用检索结果, 并且可以进行多轮检索, 对检索结果自己进行迭代和优化。所以要实现Agentic RAG, 就需要创建一个智能体而检索过程将被封装成可以自主调用、评估、迭代和优化的工具难度更高。Agentic RAG特点自主决策可自主决定检索时机和策略提高了检索的灵活性和准确性。多轮检索支持多轮检索和迭代优化能够根据初步检索结果调整后续检索策略检索结果更靠谱。复杂融合检索结果与上下文信息的融合更加复杂和智能能够更好地支持多轮对话和复杂任务。总结Agentic RAG会计划、会反思、会用工具, 通过多轮自我驱动把需求拆解、检索、迭代、融合、评估、优化。Graph RAGGraph RAG(Graph-based Retrieval-Augmented Generation)通过引入图结构数据(如知识图谱), 提供更丰富的上下文信息和推理路径来增强语言模型的推理能力和信息检索效果。 Graph RAG特点结构化知识整合与传统RAG依赖非结构化文本不同Graph RAG将信息表示为实体、属性及关系的互联网络能更精准地捕获语义关联和全局信息。 复杂查询支持通过图谱的拓扑结构(如节点、边、子图)实现多步推理和长尾问题处理支持基于图结构的复杂推理路径提高生成的准确性和可靠性。冗余信息减少图数据抽象和总结文本内容缩短输入长度缓解传统RAG的“Lost in the Middle”问题(即上下文过长导致的推理困难)。提供了更直观的可解释性有助于理解模型的决策过程。总结把知识抽成图谱让检索与推理更准确。融合应用根据不同的业务需求如何选择合适的RAG方式至关重要复杂场景下可能需要多种RAG方式组合使用。而在未来的发展方向将多模态RAG、Agentic RAG与GraphRAG相融合作为一个大的RAG组件将会是必然趋势。智能客服与产品支持场景用户上传 “家电故障图片 / 视频” 咨询客服系统通过多模态 RAG 检索产品手册的图文维修指南、历史故障案例的视频解决方案生成带图文的维修步骤案例联想的 “智能设备助手”用户上传笔记本键盘失灵的视频系统检索出 “键盘排线检查” 的文本说明拆解视频片段。辅助健康诊疗场景医生上传患者的“CT 影像病历文本”检索相似病例的影像报告、临床指南的图文治疗方案, 协助医生进行病情诊断和治疗方案核心价值解决“影像信息无法被传统RAG检索”的问题结合知识图谱, 让LLM结合影像特征与文本病历生成诊断建议。自助终身学习场景学生上传“数学公式图片语音或文字提问”检索教材中的公式推导文本、老师讲解该公式的视频片段、相似例题的图文解析生成“公式含义推导步骤例题练习”的多模态学习资料案例可汗学院的 “多模态学习助手”支持学生上传几何图形图片检索相关定理的动画演示与文字解释。电商与内容创作场景电商运营上传商品图片或视频, 检索相似商品的文案、用户评价中的关键词、竞品的视频介绍生成“商品详情页文案卖点视频脚本”内容创作设计师上传“海报草稿图”检索配色方案的图文参考、字体推荐的文本指南、相似风格的海报案例辅助优化设计。如何学习大模型 AI 由于新岗位的生产效率要优于被取代岗位的生产效率所以实际上整个社会的生产效率是提升的。但是具体到个人只能说是“最先掌握AI的人将会比较晚掌握AI的人有竞争优势”。这句话放在计算机、互联网、移动互联网的开局时期都是一样的道理。我在一线科技企业深耕十二载见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事早已在效率与薪资上形成代际优势我意识到有很多经验和知识值得分享给大家也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。我们整理出这套AI 大模型突围资料包✅ 从零到一的 AI 学习路径图✅ 大模型调优实战手册附医疗/金融等大厂真实案例✅ 百度/阿里专家闭门录播课✅ 大模型当下最新行业报告✅ 真实大厂面试真题✅ 2025 最新岗位需求图谱所有资料 ⚡️ 朋友们如果有需要《AI大模型入门进阶学习资源包》下方扫码获取~① 全套AI大模型应用开发视频教程包含提示工程、RAG、LangChain、Agent、模型微调与部署、DeepSeek等技术点② 大模型系统化学习路线作为学习AI大模型技术的新手方向至关重要。 正确的学习路线可以为你节省时间少走弯路方向不对努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划带你从零基础入门到精通③ 大模型学习书籍文档学习AI大模型离不开书籍文档我精选了一系列大模型技术的书籍和学习文档电子版它们由领域内的顶尖专家撰写内容全面、深入、详尽为你学习大模型提供坚实的理论基础。④ AI大模型最新行业报告2025最新行业报告针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估以了解哪些行业更适合引入大模型的技术和应用以及在哪些方面可以发挥大模型的优势。⑤ 大模型项目实战配套源码学以致用在项目实战中检验和巩固你所学到的知识同时为你找工作就业和职业发展打下坚实的基础。⑥ 大模型大厂面试真题面试不仅是技术的较量更需要充分的准备。在你已经掌握了大模型技术之后就需要开始准备面试我精心整理了一份大模型面试题库涵盖当前面试中可能遇到的各种技术问题让你在面试中游刃有余。以上资料如何领取为什么大家都在学大模型最近科技巨头英特尔宣布裁员2万人传统岗位不断缩减但AI相关技术岗疯狂扩招有3-5年经验大厂薪资就能给到50K*20薪不出1年“有AI项目经验”将成为投递简历的门槛。风口之下与其像“温水煮青蛙”一样坐等被行业淘汰不如先人一步掌握AI大模型原理应用技术项目实操经验“顺风”翻盘这些资料真的有用吗这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理现任上海殷泊信息科技CEO其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证服务航天科工、国家电网等1000企业以第一作者在IEEE Transactions发表论文50篇获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。资料内容涵盖了从入门到进阶的各类视频教程和实战项目无论你是小白还是有些技术基础的技术人员这份资料都绝对能帮助你提升薪资待遇转行大模型岗位。以上全套大模型资料如何领取