网站建设流程书籍郑州百度推广哪家好
2026/1/24 20:53:51 网站建设 项目流程
网站建设流程书籍,郑州百度推广哪家好,廊坊建设局网站,青岛手机建站模板本系列文章基于在多个项目中积累的Agent应用构建经验#xff0c;分享Agentic AI基础设施实践经验内容#xff0c;帮助您全面深入地掌握Agent构建的基本环节。上篇文章介绍了构建Agent记忆模块的最佳实践。本篇文章将深入探讨MCP服务器从本地到云端的部署演进。引言随着AI技术…本系列文章基于在多个项目中积累的Agent应用构建经验分享Agentic AI基础设施实践经验内容帮助您全面深入地掌握Agent构建的基本环节。上篇文章介绍了构建Agent记忆模块的最佳实践。本篇文章将深入探讨MCP服务器从本地到云端的部署演进。引言随着AI技术的快速发展特别是大语言模型LLM的广泛应用Agentic AI正在成为下一个技术热点。在Agentic AI的工作流程中AI Agent需要调用各种外部工具来扩展其能力边界——从数据库查询到API调用从文件操作到复杂的业务逻辑处理。许多推理框架和Agentic AI框架提供了内置工具以供LLM使用而为了标准化AI模型与外部工具之间的交互Anthropic在2024年11月推出了模型上下文协议Model Context Protocol简称MCP。MCP就像是AI应用的“USB-C接口”提供了一种标准化的方式来连接AI模型与不同的数据源和工具。然而随着MCP在实际应用中的推广一个重要的架构问题浮现出来MCP服务器应该部署在哪里本文将深入探讨MCP协议MCP服务器本地部署和云端部署的适用场景和参考架构以及如何在亚马逊云科技云服务上实现这一目标。第一部分理解工具调用和MCP协议从工具调用说起工具调用Tool use指模型了解、选择并调用外部工具的能力。例如用户希望检索Amazon EC2的最新一代实例价格而具体价格并没有内置在大模型本身的知识中仅靠大模型无法回答或价目表已经陈旧不具备回答价值。但大模型拥有工具调用能力时LLM会根据事先传入的已安装工具列表选择合适的工具并生成对应工具的调用参数。但LLM自身无法直接运行工具该执行过程是由推理框架或AI Agent框架负责执行再将执行结果返回给LLMLLM根据执行结果进一步生成回复。许多Agentic AI框架内置了一些基础工具供大模型调用。例如Strands Agents SDK提供了30种内置工具包含计算器、HTTP请求、文件系统操作等工具。在上述的实例价格查询场景中大模型根据自身知识了解到可以使用Strands Agents SDK内置的HTTP请求工具调用Amazon Pricing API获取价格。此时大模型就会生成工具调用请求Strands Agent SDK会根据请求中的URL和请求参数调用Amazon Pricing API并将结果返回给大模型。但Agentic AI框架内置的工具也有其局限性。内置的工具主要为基础工具无法应对复杂的业务需求。有些业务甚至需要定制化的工具并且内置工具的版本更新和维护需要与框架的发布周期同步工具无法单独频繁迭代。应对这种场景就需要外挂工具将工具与Agentic AI框架解耦MCP协议便应运而生。MCP的架构设计MCP通过引入标准化的客户端——服务器架构和统一协议试图解决大模型的工具管理集成和通讯的问题。MCP客户端通常集成在AI应用中如Amazon Q Developer、Claude Desktop、Cursor等工具。这些客户端负责与MCP服务器通信。MCP服务器则充当了AI应用和具体工具之间的转换桥梁。MCP服务器一般作为代理Proxy或边车Sidecar服务存在它将标准的MCP请求转换为特定工具能理解的格式执行相应操作后再将结果返回给客户端。以Claude提供的示例Git MCP Server为例客户端通过MCP协议向MCP Server发起操作Git存储库的请求Git MCP Server利用内置的Git SDK对存储库进行操作后以MCP协议向客户端返回操作结果。这种设计实现了协议层面的解耦使得工具的升级和变更不会直接影响到AI应用。图1MCP客户端和服务器的关系MCP协议带来的最大优势是松耦合架构。AI Agent只需要支持MCP协议不需要关心工具的更新和变化也不再需要学习和适配各种不同的API格式所有的工具调用都通过统一的MCP协议进行使用相同的数据格式和通信方式这大大简化了开发者使用多种工具的集成复杂度让大量工具的集成变得可行。而对工具提供方而言每个工具的MCP服务器由相应的厂商或社区独立开发和维护而无需考虑与AI Agent进行集成这样就实现了责任的清晰分工。第二部分部署方案的选择MCP的部署模式MCP协议支持两种主要的部署模式本地部署和远程部署——二者最明显的区别是MCP服务器是否与客户端位于同一地。不同的部署模式适应不同场景有各自的优缺点下文将详细比较这两种部署模式。本地部署图2本地环境运行Agent Tools绝大多数MCP服务器默认提供本地部署方式。本地部署模式中MCP服务器作为本地进程或容器运行。用户需要配置启动命令如npx、uv等包管理器或docker等容器运行时以及对应的启动参数和环境变量。配置完成后客户端通过系统调用创建子进程启动服务端程序并建立与子进程的输入输出管道连接。客户端只要监测服务器进程即可了解MCP服务器的运行状况。这种基于进程生命周期的连接管理机制简单有效避免了复杂的网络连接管理问题。客户端与服务端通过标准输入输出流采用UTF-8编码的JSON-RPC 2.0规范进行通信。这种机制提供了原生的双向通信。同时本地通信通过系统级别的管道传输避免了网络层的复杂性保证了通信的可靠性和效率。本地部署架构简单方便适合在以下场景中使用功能方面一些需要本地数据访问和工具集成的场景必须使用本地部署。例如在开发环境中它可以让AI助手直接访问本地文件系统、执行构建脚本、运行测试用例提供无缝的开发体验。对于数据分析任务本地部署的MCP服务可以直接访问本地数据库、处理本地文件避免了数据传输的延迟和安全风险。性能方面本地部署避免了网络开销具有更低的延迟和更高的吞吐量。对于需要频繁交互的应用场景如实时代码分析、交互式数据探索等这种性能优势尤为明显。虽然本地部署在部署和操作层面比较方便但在生产环境中面临诸多挑战版本管理困难当后端工具升级时其API可能发生变化相应的MCP服务器就需要更新以适配新的API。MCP服务器自身也在不断迭代增加新功能和修补漏洞这些因素导致MCP服务器更新非常频繁。常用的npm和uv包管理器在缓存命中时不会自动更新已安装的包用户必须主动检查更新。本地部署模式下这种更新完全依赖手动操作在MCP服务器数量较多时很难及时响应变化。安全风险虽然本地部署可以避免内容在网络上传输导致的风险但也带来了更多权限泄露风险。本地MCP服务器默认情况下运行在与用户相同的命名空间下权限与当前用户相同。理论上可以访问当前用户能访问的所有文件和资源。同时本地MCP服务器需要将所需的凭证例如API Key、用户名密码等存储在本地如配置不当其他应用也可读取并使用该凭证造成横向权限泄露。资源和性能限制每个MCP服务器都是独立的进程且都会随着MCP客户端启动。当需要启动大量MCP服务器时会显著影响本地机器的性能。特别是在资源受限的开发环境中这种影响会更加明显。远程部署远程部署模式则将MCP服务器部署在其他的远程服务器上服务器暴露一个HTTP端点客户端与服务器通过Streamable HTTP协议进行通信。Streamable HTTP协议是HTTP协议的扩展在标准HTTP 1.1的基础上支持轻量级的Server-sent Event服务端发送消息简称SSE。MCP客户端启动时会连接远程MCP服务器的HTTP端点以初始化Session。初始化完成后客户端可通过HTTP POST方法发送请求MCP服务器在处理完成后可以直接以JSON格式返回结果。如任务耗时较长也可以将连接升级至SSE以流式形式逐步返回结果。许多MCP服务器提供方已经开始支持远程部署模式例如Remote GitHub MCP Server和Amazon Knowledge MCP Server。这种模式虽然增加了网络延迟但在安全性、性能和可维护性方面具有显著优势。图3远程环境运行Agent Tools远程部署在以下领域有独到优势版本更新更便捷开发者可以通过持续集成部署CI/CD流水线直接在单一可控的环境更新MCP服务器。用户无需进行操作只需重新连接就能获得最新版本的工具。这种自动化机制彻底解决了本地部署中手动维护和更新的痛点大大降低了运维负担也减少了版本不一致所带来的问题。更加安全可靠云端部署在安全性方面提供了多层保护而权限隔离是其中的核心优势。MCP服务器在受控的云环境中运行MCP客户端在调用服务器时只发送具体的工具调用请求不包含完整的对话上下文或敏感信息。这种设计大大降低了信息泄露的风险即使MCP服务器被攻击攻击者也无法获取到完整的用户数据。同时MCP服务器可通过OAuth等标准协议进行身份认证鉴权。这使得无需将凭证分发至本地也可以在通过身份认证后利用远程MCP服务器的凭证进行一些需要高权限的操作或访问受访问控制保护的知识库。降低凭证泄露或被滥用的风险。更优性能和性价比资源优化是云端部署的另一个显著优势。客户端只需要维护简单的HTTP连接而不用担心本地资源消耗。对于一些有大量计算需求的场景可以直接在云端环境中满足无需在本地进行复杂的环境配置或消耗本地资源。按需计费的模式进一步降低了总体成本特别是对于使用频率不高的MCP服务器。更好的可观测和可维护性现代LLMOps越来越重视可观测性云端部署在这方面具有明显优势。统一监控系统可以提供请求量和响应时间的实时监控详细记录资源使用情况错误率等性能指标。而安全审计功能为企业级应用提供了必要的合规支持。系统可以记录所有工具调用请求的完整日志实现可疑行为的自动检测和告警并生成详细的合规性报告。这些功能在本地环境中很难实现但在云端环境中可以通过专业的监控和分析工具轻松提供。考虑到这些优势远程部署的MCP服务器特别适用于需要集中管理和共享资源的企业环境。在大型组织中IT团队可以部署统一的MCP服务器集群为不同部门的AI应用提供标准化的工具和数据访问接口。这种集中式架构不仅简化了权限管理和审计追踪还能够实现资源的统一监控和性能优化。对于跨地域协作的团队远程MCP服务器提供了理想的解决方案。团队成员无论身处何地都可以通过标准的HTTP协议访问相同的服务器资源确保了协作环境的一致性。这种部署方式还特别适用于需要高可用性的生产环境管理员可以通过负载均衡、故障转移等技术手段构建健壮的服务架构。云原生环境是远程MCP服务器的另一个重要应用场景。在容器化和微服务架构中MCP服务器可以作为独立的服务组件进行部署和扩展与其他业务服务保持松耦合关系。这种架构模式支持按需扩容、滚动更新等现代运维实践为AI应用的规模化部署提供了技术基础。但远程部署仍然有其局限性网络延迟和可靠性是影响远程部署性能和稳定性的主要因素。特别是在需要频繁交互的场景中网络往返时间可能会显著影响用户体验。相比本地部署的进程间通信HTTP传输必然会引入额外的网络开销且网络中断或不稳定会直接影响服务的可用性。安全性方面远程部署需要将HTTP端点暴露到Internet或其他网络环境天生比本地部署拥有更大的攻击面。数据需要通过网络传输增加了被截获或篡改的风险。攻击者也会通过暴露的HTTP端点试图获得工具的访问权限因此需要谨慎的安全设计和额外的安全投入如认证鉴权加密等。兼容性方面Streamable HTTP协议推出时间较晚部分客户端对此支持较差。但可通过本地第三方工具将其转换为stdio模式兼容更多客户端。第三部分在亚马逊云科技上构建和部署MCP服务器根据您对基础设施的选择亚马逊云科技提供了两种主要的部署选项部署在Amazon Bedrock AgentCore Runtime由亚马逊云科技完全托管的MCP服务器运行时。部署在亚马逊云科技计算服务如Amazon Lambda或Amazon ECS with Amazon Fargate以获得更多的基础设施灵活性。您可以根据您期望部署的区域选择合适的部署模式。Amazon Bedrock AgentCore已正式可用仅在海外部分区域可用。在亚马逊云科技中国区域含北京和宁夏区域您可以在计算服务上部署MCP服务器。使用AgentCore Runtime快速构建和部署MCP服务器Amazon Bedrock AgentCore是亚马逊云科技推出的一项服务专门用于帮助开发者快速构建、部署和运行企业级的Agentic AI应用让开发者能够专注于创新而不是底层的技术细节。它是为Agentic AI量身打造的开箱即用的“工具箱”核心服务包括Runtime运行时提供会话完全隔离安全的无服务器的运行环境可用于Agent、MCP服务器托管部署。Gateway网关帮助Agent安全地以MCP协议连接现有工具和API服务简化工具集成。以及Memory记忆功能、Code Interpreter代码解释器、Browser浏览器工具、Identity身份管理、Observability可观察性等其他Agent运行部署所需要的组件。Amazon Bedrock AgentCore Runtime是专门为Agent或MCP服务器构建的无服务器运行环境提供会话级的安全隔离以及按量付费的计费模式。图4AgentCore Runtime部署MCP ServerAmazon Bedrock AgentCore Runtime提供MCP服务器支持您可以使用bedrock-agentcore-starter-toolkit快速将您的MCP服务器从源代码部署到Amazon Bedrock AgentCore Runtime而无需管理任何基础设施。准备好源代码后您仅需执行agentcore configure和agentcore launch两条命令即可通过CodeBuild在亚马逊云科技托管环境构建容器镜像配置基于Amazon Cognito的身份认证机制将构建完成的MCP服务器镜像部署到Amazon Bedrock AgentCore Runtime并创建一个访问端点。已认证的客户端可通过托管的端点使用Streamable HTTP传输方式访问MCP服务器。您可以参阅基于Jupyter Notebook的快速使用指导帮助您快速上手Amazon Bedrock AgentCore Runtime。快速使用指导https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/01-tutorials/01-AgentCore-runtime/02-hosting-MCP-server利用Amazon Lambda部署无状态MCP服务器图5Amazon Lambda部署无状态MCP ServerAmazon Lambda特别适合处理无状态的MCP服务器场景。这类场景通常包括网络搜索、API调用等无状态操作采用单次请求——响应模式任务运行时间相对较短。Amazon Lambda的事件驱动特性与这种使用模式高度契合。Amazon Lambda的优势在于其独特的计费模式和运行特性。毫秒级计费意味着只需为实际运行时间付费对于间歇性使用的MCP服务器而言成本极低。强大的自动伸缩能力让系统可以在10秒内启动1000个实例轻松应对突发流量。零服务器管理的特性让开发者无需关心底层基础设施的维护和升级。最重要的是Amazon Lambda提供的请求级隔离确保每个请求都运行在独立的执行环境中这对于安全性要求较高的企业应用非常重要。技术实现方面可以使用Amazon Lambda Web Adapter将基于FastMCP的Web应用部署到Amazon Lambda。这个适配器作为一个层Layer集成到Amazon Lambda函数中能够将传统的Web应用请求转换为Amazon Lambda能够处理的格式让您可以使用现有框架进行开发而无需进行代码改动。在Amazon Lambda上部署的服务器可通过API Gateway暴露给用户。API Gateway是亚马逊云科技托管的API网关可将部署到Amazon Lambda的MCP服务器安全地暴露到Internet或VPC内。API Gateway支持基于API Key或Amazon Lambda的认证功能您可以通过配置API Key或Amazon Lambda函数控制哪些用户可以访问MCP服务器。API Gateway与Amazon WAF的集成更能有效防止恶意流量访问或嗅探MCP服务器确保访问安全。您可参阅基于SAMServerless Application Model的模板帮助您快速开始在Amazon Lambda上开发无状态的MCP服务器。该模板包含基于FastMCP框架的Python源代码用于部署的SAM模板以及部署脚本。利用该模板您可以快速部署运行在Amazon Lambda上的MCP服务器、API Gateway以及其他支持资源。具体部署参数可在SAM模板中定义包括运行时环境、内存配置、环境变量等参数。基于SAM的模板https://github.com/aws-samples/sample-serverless-mcp-servers/tree/main/stateless-mcp-on-lambda-python利用Amazon ECS with Amazon Fargate部署有状态MCP服务器图6Amazon ECS Fargate部署有状态MCP Server与无状态的Amazon Lambda相比容器环境无疑适合处理有状态的MCP服务器场景。这类场景包括多轮对话场景如Playwright自动化需要保持状态的长时间运行任务以及处理时间较长需要通过SSE不断发送进程或中间结果的应用。容器化部署更为灵活对于复杂或依赖外部组件的MCP服务器更为方便。您可以将依赖的组件和MCP服务器构建在同一个容器镜像中MCP服务器和依赖项可通过跨进程调用或本地网络进行交互降低复杂度。亚马逊云科技提供多种容器运行时选择。您可以使用现有的容器基础设施如Amazon ECS、Amazon EKS等在Amazon EC2上运行MCP服务器。如您不希望管理基础设施您可以使用Amazon ECS管理容器并使用Amazon Fargate运行环境运行容器。Amazon ECS是全托管易上手的容器编排服务您无需学习Kubernetes的复杂操作方式即可将容器运行在亚马逊云科技托管的运行环境上。Amazon Fargate作为全托管的运行环境您无需管理操作系统容器运行时等运行环境有效减少了运维工作量。Amazon Fargate按实际使用的CPU和内存进行计费且支持基于ECS Autoscaling的指标跟踪弹性伸缩尽可能节省成本。您需要使用ALB将启用Server-Side Event的MCP服务器暴露到Internet或VPC。在配置ALB时需要启用Sticky Sessions机制。该机制可以有效保持状态确保同一用户的多个请求能够路由到同一个实例。您可参阅基于Amazon CloudFormation的模板帮助您快速开始在Amazon ECS上开发有状态的MCP服务器。该模板包含基于FastMCP框架的Python源代码用于部署的Amazon CloudFormation模板以及部署脚本。利用该模板您可以快速部署Amazon ECS集群以及其他支持资源构建容器镜像并将容器镜像运行在Amazon ECS Fargate上。具体部署参数可在Amazon CloudFormation模板中定义包括运行时环境、资源配置、VPC配置等参数。第四部分快速迁移现有的工具或MCP服务器至云上如果您已有现有的Lambda函数或API利用Amazon Bedrock AgentCore Gateway可以快速将现有工具以MCP协议暴露出来以供客户端使用。如果您已经开发了基于stdio本地部署的MCP服务器也可以利用亚马逊云科技解决方案快速将MCP服务器部署到云上。使用AgentCore Gateway转换现有API图7Amazon Bedrock AgentCore Gateway架构Amazon Bedrock AgentCore Gateway是一项全托管的工具网关服务其主要作用是作为一个统一的连接层将各种不同的工具和资源转换为MCP兼容的工具使Agent能够通过单一的端点访问背后的多种工具。Amazon Bedrock AgentCore Gateway支持将Lambda函数、OpenAPI规范API、Smithy模型API快速转换为基于Streamable HTTP的MCP端点并提供内置的认证鉴权。例如很多企业内部已经有现成的REST API而Amazon Bedrock AgentCore Gateway就可以把这些现有API服务快速转换成一个MCP服务器供AI Agent使用。多个API可以挂载到同一个端点以简化客户端配置。在某些真实业务场景下Agent需要选择的工具多达几百甚至上千种。Amazon Bedrock AgentCore Gateway支持语义检索语义检索作为一个特殊的工具可以根据Agent提出的需求找出跟当前任务最相关的工具列表再注入对应的工具描述给Agent进行选择。该功能可以帮助Agent智能地发现和选择最适合其任务的工具大幅度减少输入token消耗防止工具过多导致的延迟和效率问题。您可参阅基于Jupyter Notebook的快速使用指导帮助您快速上手Amazon Bedrock AgentCore Gateway。完整的示例代码请参阅下方链接。示例代码https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/01-tutorials/02-AgentCore-gateway在亚马逊云科技中国区域快速将现有MCP服务器部署至云上图8mcp-proxy接口转换为了简化现有MCP服务器到云端的迁移过程本例开发了一款自动化转换解决方案。该解决方案将现有基于stdio交互模式的MCP服务器转换至可在云上部署的、基于Streamable HTTP的MCP服务器。该解决方案基于社区开源的mcp-proxy项目该项目本质上是一个HTTP服务器将收到的请求转发至MCP服务器进程中以完成Streamable HTTP至stdio的转换而无需修改源代码。利用该解决方案您只需输入MCP服务器的运行命令或GitHub仓库地址该解决方案会自动生成包含所有必要的运行时环境和依赖包的Dockerfile自动化构建容器镜像。随后使用Amazon CloudFormation模板将该容器镜像部署至现有的Amazon ECS集群中并创建ALB将其暴露至Internet。这种自动化工具大大降低了从本地到云端迁移的技术门槛开发者只需要提供MCP服务器的运行命令和基本的部署参数工具就能自动完成整个部署流程。这对于那些有大量现有MCP服务器需要迁移的团队来说特别有价值您可以在Github上获取该解决方案。Githubhttps://github.com/aws-samples/sample-mcp-server-automation总结随着Agentic AI技术的不断发展MCP协议正在成为连接AI Agent与外部工具的标准桥梁。虽然本地部署MCP服务器在开发阶段具有便利性但云端部署在生产环境中展现出了明显的优势。通过将MCP服务器部署到亚马逊云科技云服务企业可以获得自动化的版本管理、增强的安全性、更好的可扩展性和全面的可观测性。特别是在版本管理方面云端部署彻底解决了本地部署中包管理器更新滞后的问题确保用户始终能够使用最新版本的MCP服务器。安全性方面云端部署通过物理隔离和精细化的权限控制大大降低了权限泄露和恶意行为的风险。同时统一的监控和日志记录也为企业提供了完整的安全审计能力。成本方面云端部署的按需付费模式相比本地部署的固定成本投入更加经济高效。特别是对于使用频率不高的MCP服务器云端部署可以显著降低总体拥有成本。许多用户已经将MCP服务器部署到云上翰德在亚马逊云科技上海峰会上展示的简历分析MCP服务器是一个成功案例。他们在初期选择了Amazon ECS Fargate部署有状态服务支持复杂的简历处理流程。随着业务的发展和对成本优化的需求团队正在评估将部分功能迁移到Amazon Lambda以进一步降低运营成本。从业务价值角度看这个MCP服务器实现了简历筛选的自动化大大提高了猎头团队的工作效率减少了人工审核的工作量。详细内容敬请参阅文章《效率提升150%翰德基于MCP Agent重塑智能招聘新范式》。展望未来随着更多企业采用Agentic AI解决方案MCP服务器的云端部署将成为主流选择。自动化部署工具的发展也将进一步降低迁移门槛让现有的MCP服务器能够更容易地迁移到云端。亚马逊云科技提供多种方式帮助您部署MCP服务器到云端。您可以使用专为Agentic AI工作负载提供无服务器运行环境的托管服务Amazon Bedrock AgentCore Runtime也可以使用多样化的计算服务例如Amazon Lambda或Amazon ECS with Amazon Fargate来应对各种复杂需求。对于正在考虑部署MCP服务器的开发者和企业而言建议优先考虑云端部署方案这不仅能够获得更好的技术优势也能为未来的扩展和维护打下坚实的基础。技术资料链接无服务器部署MCP服务器示例代码库https://github.com/aws-samples/sample-serverless-mcp-servers/tree/mainAmazon Bedrock AgentCore Runtime部署MCP示例代码库https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/01-tutorials/01-AgentCore-runtime/02-hosting-MCP-serverAmazon Bedrock AgentCore Gateway部署MCP示例代码库https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/01-tutorials/02-AgentCore-gateway本篇作者于昺蛟亚马逊云科技现代化应用解决方案架构师负责亚马逊云科技容器和无服务器产品的架构咨询和设计。在容器系统的建设和运维、应用现代化、DevOps等领域有多年经验致力于容器技术和现代化应用的推广。谢川亚马逊云科技资深生成式AI技术专家负责基于亚马逊云科技生成式AI解决方案的设计、实施和优化。曾在通信、电商、互联网等行业有多年的产研经验在数据科学、推荐系统、LLM、RAG、Agent应用等方面有丰富的实践经验并且拥有多个AI相关产品技术发明专利。李元博亚马逊云科技人工智能与机器学习、生成式AI解决方案架构师专注于人工智能与机器学习特别是生成式AI场景落地的端到端架构设计和业务优化。在互联网行业工作多年在用户画像、精细化运营、推荐系统、大数据处理方面有丰富的实战经验。王凌霄生成式AI解决方案架构师。郭韧亚马逊云科技人工智能产品专家团队经理负责AI相关解决方案的架构设计、实施和推广。往期精彩内容新用户注册海外区域账户可获得最高200美元服务抵扣金覆盖Amazon Bedrock生成式AI相关服务。“免费计划”账户类型确保零花费安心试用。星标不迷路开发更极速关注后记得星标「亚马逊云开发者」听说点完下面4个按钮就不会碰到bug了点击阅读原文查看博客获得更详细内容

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询