2026/2/12 0:29:43
网站建设
项目流程
站长工具高清,北京做网站开发公司哪家好,Wordpress电脑版需要下载吗,无锡网站制作哪家正规一、项目介绍
摘要
本项目基于YOLOv10目标检测算法开发了一套高精度的扑克牌识别检测系统#xff0c;能够准确识别和定位52种标准扑克牌#xff08;包括13个点数4种花色#xff09;。系统在包含24,233张图像的数据集上进行了训练和验证#xff0c;其中训练集21,203张能够准确识别和定位52种标准扑克牌包括13个点数×4种花色。系统在包含24,233张图像的数据集上进行了训练和验证其中训练集21,203张验证集2,020张测试集1,010张。该系统可实时检测扑克牌的种类、位置和数量可广泛应用于赌场监控、扑克游戏自动计分、魔术教学分析、智能机器人抓取等多个领域具有重要的实用价值和商业前景。项目意义自动化游戏计分可替代传统人工计分方式实现扑克类游戏的自动化计分和结果判定大幅提高游戏效率和公平性。赌场监控与防作弊在博彩行业可用于实时监控牌桌情况自动识别异常牌型防范作弊行为保障赌场运营安全。魔术教学与研究为魔术爱好者提供自动化的扑克牌动作分析工具辅助学习和研究扑克魔术技巧。机器人视觉引导为扑克牌分拣机器人提供精准的视觉定位能力实现自动化扑克牌整理和分类。计算机视觉技术验证作为目标检测算法的一个典型应用场景扑克牌识别具有图案复杂、相似度高、遮挡常见等特点是验证和改进目标检测算法的理想测试平台。教育示范价值该项目涵盖了数据采集、标注、模型训练和部署的全流程是计算机视觉教学的优秀案例。目录一、项目介绍摘要项目意义二、项目功能展示系统功能图片检测视频检测摄像头实时检测三、数据集介绍数据集概述数据集特点数据集配置文件数据集制作流程四、项目环境配置创建虚拟环境pycharm中配置anaconda安装所需要库五、模型训练训练代码训练结果六、核心代码七、项目源码视频下方简介内基于深度学习YOLOv10的扑克牌识别检测系统YOLOv10YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv10的扑克牌识别检测系统YOLOv10YOLO数据集UI界面Python项目源码模型二、项目功能展示系统功能✅图片检测可对图片进行检测返回检测框及类别信息。✅视频检测支持视频文件输入检测视频中每一帧的情况。✅摄像头实时检测连接USB 摄像头实现实时监测。✅参数实时调节置信度和IoU阈值图片检测该功能允许用户通过单张图片进行目标检测。输入一张图片后YOLO模型会实时分析图像识别出其中的目标并在图像中框出检测到的目标输出带有目标框的图像。视频检测视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示适用于视频监控和分析等场景。摄像头实时检测该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用提供即时反馈。核心特点高精度基于YOLO模型提供精确的目标检测能力适用于不同类型的图像和视频。实时性特别优化的算法使得实时目标检测成为可能无论是在视频还是摄像头实时检测中响应速度都非常快。批量处理支持高效的批量图像和视频处理适合大规模数据分析。三、数据集介绍数据集概述本数据集是专为扑克牌识别任务构建的大规模图像集合共包含24,233张高质量扑克牌图像涵盖52种标准扑克牌的所有组合。数据集按照8.5:1:0.5的比例划分为训练集21,203张、验证集2,020张和测试集1,010张确保模型训练的科学性和评估的可靠性。数据集特点多样性丰富包含不同光照条件自然光、室内灯光、强光、弱光等多种背景环境纯色背景、木质桌面、布料、复杂场景等不同摆放方式平铺、叠放、部分遮挡、弯曲变形等多种视角正视角、斜视角、俯视角等标注精确每张扑克牌都使用矩形框精确标注标注信息包括52种类别如10C代表梅花10AH代表红心A等标注经过三重校验确保准确性平衡性良好每类扑克牌样本数量基本均衡训练集、验证集和测试集的数据分布一致数据集配置文件数据集采用YOLO格式组织配置文件包含以下关键内容train: F:\扑克牌识别检测数据集\train\images val: F:\扑克牌识别检测数据集\valid\images test: F:\扑克牌识别检测数据集\test\images nc: 52 names: [10C, 10D, 10H, 10S, 2C, 2D, 2H, 2S, 3C, 3D, 3H, 3S, 4C, 4D, 4H, 4S, 5C, 5D, 5H, 5S, 6C, 6D, 6H, 6S, 7C, 7D, 7H, 7S, 8C, 8D, 8H, 8S, 9C, 9D, 9H, 9S, AC, AD, AH, AS, JC, JD, JH, JS, KC, KD, KH, KS, QC, QD, QH, QS]数据集制作流程数据采集使用10部不同型号的手机和相机iPhone 12/13、华为Mate40、佳能EOS R等采集原始图像在不同光照条件和背景下拍摄包含单人持牌、多人持牌、桌面摆放等多种场景数据清洗去除模糊、过暗/过曝、严重畸变的图像检查并删除标注错误的样本平衡各类别的样本数量数据标注使用LabelImg工具进行人工标注标注要求框体紧贴扑克牌边缘不包含多余背景每张图像由3人分别标注后进行交叉验证数据增强应用随机旋转亮度/对比度调整添加高斯噪声模拟运动模糊透视变换数据集划分按场景、设备、光照等条件分层抽样确保训练集、验证集和测试集的数据分布一致避免相同扑克牌出现在不同子集中格式转换将标注转换为YOLO格式归一化坐标生成对应的索引文件验证标注文件与图像的对应关系四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov10 python3.9激活虚拟环境conda activate yolov10安装cpu版本pytorchpip install torch torchvision torchaudiopycharm中配置anaconda安装所需要库pip install -r requirements.txt五、模型训练训练代码from ultralytics import YOLOv10 model_path yolov10s.pt data_path datasets/data.yaml if __name__ __main__: model YOLOv10(model_path) results model.train(datadata_path, epochs500, batch64, device0, workers0, projectruns/detect, nameexp, )根据实际情况更换模型 yolov10n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 yolov10s.yaml (small)小模型适合实时任务。 yolov10m.yaml (medium)中等大小模型兼顾速度和精度。 yolov10b.yaml (base)基本版模型适合大部分应用场景。 yolov10l.yaml (large)大型模型适合对精度要求高的任务。--batch 64每批次64张图像。--epochs 500训练500轮。--datasets/data.yaml数据集配置文件。--weights yolov10s.pt初始化模型权重yolov10s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog from PyQt5.QtCore import QThread, pyqtSignal from ultralytics import YOLOv10 from UiMain import UiMainWindow import time import os class DetectionThread(QThread): frame_received pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果 finished_signal pyqtSignal() # 线程完成信号 def __init__(self, model, source, conf, iou, parentNone): super().__init__(parent) self.model model self.source source self.conf conf self.iou iou self.running True def run(self): try: if isinstance(self.source, int) or self.source.endswith((.mp4, .avi, .mov)): # 视频或摄像头 cap cv2.VideoCapture(self.source) while self.running and cap.isOpened(): ret, frame cap.read() if not ret: break # 保存原始帧 original_frame frame.copy() # 检测 results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) # 发送信号 self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) # 控制帧率 time.sleep(0.03) # 约30fps cap.release() else: # 图片 frame cv2.imread(self.source) if frame is not None: original_frame frame.copy() results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) except Exception as e: print(fDetection error: {e}) finally: self.finished_signal.emit() def stop(self): self.running False class MainWindow(UiMainWindow): def __init__(self): super().__init__() # 初始化模型 self.model None self.detection_thread None self.current_image None self.current_result None self.video_writer None self.is_camera_running False self.is_video_running False self.last_detection_result None # 新增保存最后一次检测结果 # 连接按钮信号 self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) # 初始化模型 self.load_model() def load_model(self): try: model_name self.model_combo.currentText() self.model YOLOv10(f{model_name}.pt) # 自动下载或加载本地模型 self.update_status(f模型 {model_name} 加载成功) except Exception as e: QMessageBox.critical(self, 错误, f模型加载失败: {str(e)}) self.update_status(模型加载失败) def detect_image(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp)) if file_path: self.clear_results() self.current_image cv2.imread(file_path) self.current_image cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB) self.display_image(self.original_image_label, self.current_image) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测图片: {os.path.basename(file_path)}) def detect_video(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择视频, , 视频文件 (*.mp4 *.avi *.mov)) if file_path: self.clear_results() self.is_video_running True # 初始化视频写入器 cap cv2.VideoCapture(file_path) frame_width int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps cap.get(cv2.CAP_PROP_FPS) cap.release() # 创建保存路径 save_dir results os.makedirs(save_dir, exist_okTrue) timestamp time.strftime(%Y%m%d_%H%M%S) save_path os.path.join(save_dir, fresult_{timestamp}.mp4) fourcc cv2.VideoWriter_fourcc(*mp4v) self.video_writer cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height)) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测视频: {os.path.basename(file_path)}) def detect_camera(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return self.clear_results() self.is_camera_running True # 创建检测线程 (默认使用摄像头0) conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, 0, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(正在从摄像头检测...) def stop_detection(self): if self.detection_thread and self.detection_thread.isRunning(): self.detection_thread.stop() self.detection_thread.quit() self.detection_thread.wait() if self.video_writer: self.video_writer.release() self.video_writer None self.is_camera_running False self.is_video_running False self.update_status(检测已停止) def on_frame_received(self, original_frame, result_frame, detections): # 更新原始图像和结果图像 self.display_image(self.original_image_label, original_frame) self.display_image(self.result_image_label, result_frame) # 保存当前结果帧用于后续保存 self.last_detection_result result_frame # 新增保存检测结果 # 更新表格 self.clear_results() for class_name, confidence, x, y in detections: self.add_detection_result(class_name, confidence, x, y) # 保存视频帧 if self.video_writer: self.video_writer.write(cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR)) def on_detection_finished(self): if self.video_writer: self.video_writer.release() self.video_writer None self.update_status(视频检测完成结果已保存) elif self.is_camera_running: self.update_status(摄像头检测已停止) else: self.update_status(图片检测完成) def save_result(self): if not hasattr(self, last_detection_result) or self.last_detection_result is None: QMessageBox.warning(self, 警告, 没有可保存的检测结果) return save_dir results os.makedirs(save_dir, exist_okTrue) timestamp time.strftime(%Y%m%d_%H%M%S) if self.is_camera_running or self.is_video_running: # 保存当前帧为图片 save_path os.path.join(save_dir, fsnapshot_{timestamp}.jpg) cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f截图已保存: {save_path}) else: # 保存图片检测结果 save_path os.path.join(save_dir, fresult_{timestamp}.jpg) cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f检测结果已保存: {save_path}) def closeEvent(self, event): self.stop_detection() event.accept() if __name__ __main__: app QApplication(sys.argv) # 设置应用程序样式 app.setStyle(Fusion) # 创建并显示主窗口 window MainWindow() window.show() sys.exit(app.exec_())七、项目源码视频下方简介内完整全部资源文件包括测试图片、视频py文件训练数据集、训练代码、界面代码等这里已打包上传至博主的面包多平台见可参考博客与视频已将所有涉及的文件同时打包到里面点击即可运行完整文件截图如下基于深度学习YOLOv10的扑克牌识别检测系统YOLOv10YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv10的扑克牌识别检测系统YOLOv10YOLO数据集UI界面Python项目源码模型