2026/2/20 12:23:11
网站建设
项目流程
信通网站开发中心,wordpress进后台,最全的游戏网站,如何推广自己的网站和产品一、项目介绍
摘要
本项目基于YOLOv8目标检测算法开发了一套专门用于风力发电机叶片表面缺陷检测的智能化系统。系统能够自动识别并分类7种常见的风力叶片缺陷#xff0c;包括燃烧痕迹(burning)、裂纹(crack)、变形(deformity)、污垢(dirt)、油渍(oil)、剥落(peeling)和锈蚀…一、项目介绍摘要本项目基于YOLOv8目标检测算法开发了一套专门用于风力发电机叶片表面缺陷检测的智能化系统。系统能够自动识别并分类7种常见的风力叶片缺陷包括燃烧痕迹(burning)、裂纹(crack)、变形(deformity)、污垢(dirt)、油渍(oil)、剥落(peeling)和锈蚀(rusty)。项目使用了包含4467张标注图像的数据集其中训练集3898张验证集380张测试集189张涵盖了各种环境条件和缺陷形态。通过深度学习技术的应用该系统实现了对风力叶片表面缺陷的高精度、实时检测为风电场的运维管理提供了智能化解决方案。实验结果表明该系统在测试集上达到了较高的检测精度能够满足工业现场的应用需求。项目意义风力发电作为清洁能源的重要组成部分在全球能源结构转型中扮演着关键角色。然而风力发电机叶片长期暴露在恶劣的自然环境中极易产生各种表面缺陷这些缺陷如不及时检测和处理将严重影响发电效率甚至导致叶片断裂等严重事故。传统的人工巡检方式存在效率低、成本高、危险性大等弊端特别是在海上风电场或偏远地区这些问题更加突出。本项目的开发具有多重重要意义提升检测效率与精度相比人工巡检基于YOLOv8的自动检测系统能够在短时间内完成大量图像的快速分析检测速度可达实时水平且不受人为主观因素影响检测结果更加客观准确。降低运维成本通过无人机或固定摄像头采集图像后自动分析大幅减少了高空作业的人力和时间成本特别适合大规模风电场的定期巡检需求。预防重大事故发生系统能够早期发现微小裂纹、剥落等潜在危险缺陷为及时维修提供预警避免缺陷扩大导致叶片断裂等严重后果保障风电场安全运行。延长设备使用寿命定期精确的缺陷检测可以指导针对性维护有效延长风力叶片的使用寿命提高风电设备投资回报率。推动新能源行业智能化本项目是人工智能技术在新能源领域的具体应用示范为风电行业的数字化转型提供了实践案例有助于推动整个行业的智能化升级。环境保护价值通过确保风力发电机组高效稳定运行间接提高了清洁能源的利用率减少了化石能源消耗具有显著的环境效益。技术推广潜力本项目的技术框架经过适当调整后可扩展应用于光伏板、输电线路等其他电力设施的缺陷检测具有广阔的应用前景。综上所述本YOLOv8风力叶片缺陷检测系统不仅解决了行业痛点问题还具有显著的经济效益和社会价值对促进可再生能源发展、推动能源结构优化具有重要意义。基于深度学习的风力叶片缺陷检测系统YOLOv8YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习的风力叶片缺陷检测系统YOLOv8YOLO数据集UI界面Python项目源码模型二、项目功能展示系统功能✅图片检测可对单张图片进行检测返回检测框及类别信息。✅批量图片检测支持文件夹输入一次性检测多张图片生成批量检测结果。✅视频检测支持视频文件输入检测视频中每一帧的情况。✅摄像头实时检测连接USB 摄像头实现实时监测图片检测该功能允许用户通过单张图片进行目标检测。输入一张图片后YOLO模型会实时分析图像识别出其中的目标并在图像中框出检测到的目标输出带有目标框的图像。批量图片检测用户可以一次性上传多个图片进行批量处理。该功能支持对多个图像文件进行并行处理并返回每张图像的目标检测结果适用于需要大规模处理图像数据的应用场景。视频检测视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示适用于视频监控和分析等场景。摄像头实时检测该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用提供即时反馈。核心特点高精度基于YOLO模型提供精确的目标检测能力适用于不同类型的图像和视频。实时性特别优化的算法使得实时目标检测成为可能无论是在视频还是摄像头实时检测中响应速度都非常快。批量处理支持高效的批量图像和视频处理适合大规模数据分析。三、数据集介绍数据集概述本项目的数据集包含7类缺陷标签burning烧蚀、crack裂纹、deformity变形、dirt污垢、oil油污、peeling剥落、rusty锈蚀。数据集分为训练集、验证集和测试集具体数量如下训练集3898张图像验证集380张图像测试集189张图像数据集结构数据集中的每张图像都经过标注标注信息包括类别标签burning、crack、deformity、dirt、oil、peeling、rusty边界框坐标缺陷区域的位置信息x_min, y_min, x_max, y_max数据来源数据集来源于公开的风力叶片图像数据库或合作风力发电场提供的巡检数据。所有数据均经过专业人员的标注和审核确保标注的准确性。数据预处理图像增强为了提升模型的泛化能力对训练集进行了数据增强操作包括随机旋转、翻转、缩放、亮度调整等。归一化将所有图像归一化到相同的尺寸如640x640以适应YOLOv8的输入要求。标注格式转换将标注信息转换为YOLOv8所需的格式类别索引、归一化的边界框坐标。数据集特点类别多样性数据集涵盖了7种常见的风力叶片缺陷能够满足实际运维和生产中的检测需求。高质量标注所有标注均由专业人员完成确保标注的准确性和可靠性。样本分布训练集、验证集和测试集的划分合理确保模型训练和评估的科学性。数据集划分训练集用于训练YOLOv8模型优化模型参数。验证集用于调整超参数和评估模型在训练过程中的表现防止过拟合。测试集用于最终评估模型的性能确保模型在未见数据上的泛化能力。数据集配置文件data.yamltrain: .\datasets\images\train val: .\datasets\images\val test: .\datasets\images\test nc: 7 names: [burning, crack, deformity, dirt, oil, peeling, rusty]数据集制作流程标注数据使用标注工具如LabelImg、CVAT等对图像中的目标进行标注。每个目标需要标出边界框并且标注类别。转换格式将标注的数据转换为YOLO格式。YOLO标注格式为每行object-class x_center y_center width height这些坐标是相对于图像尺寸的比例。分割数据集将数据集分为训练集、验证集和测试集通常的比例是80%训练集、10%验证集和10%测试集。准备标签文件为每张图片生成一个对应的标签文件确保标签文件与图片的命名一致。调整图像尺寸根据YOLO网络要求统一调整所有图像的尺寸如416x416或608x608。四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov8 python3.9激活虚拟环境conda activate yolov8安装cpu版本pytorchpip install torch torchvision torchaudiopycharm中配置anaconda安装所需要库pip install -r requirements.txt五、模型训练训练代码from ultralytics import YOLO model_path yolov8s.pt data_path datasets/data.yaml if __name__ __main__: model YOLO(model_path) results model.train(datadata_path, epochs500, batch64, device0, workers0, projectruns/detect, nameexp, )根据实际情况更换模型 yolov8n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 yolov8s.yaml (small)小模型适合实时任务。 yolov8m.yaml (medium)中等大小模型兼顾速度和精度。 yolov8b.yaml (base)基本版模型适合大部分应用场景。 yolov8l.yaml (large)大型模型适合对精度要求高的任务。--batch 64每批次64张图像。--epochs 500训练500轮。--datasets/data.yaml数据集配置文件。--weights yolov8s.pt初始化模型权重yolov8s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码# -*- coding: utf-8 -*- import os import sys import time import cv2 import numpy as np from PIL import ImageFont from PyQt5.QtCore import Qt, QTimer, QThread, pyqtSignal, QCoreApplication from PyQt5.QtWidgets import (QApplication, QMainWindow, QFileDialog, QMessageBox, QWidget, QHeaderView, QTableWidgetItem, QAbstractItemView) from ultralytics import YOLO # 自定义模块导入 sys.path.append(UIProgram) from UIProgram.UiMain import Ui_MainWindow from UIProgram.QssLoader import QSSLoader from UIProgram.precess_bar import ProgressBar import detect_tools as tools import Config class DetectionApp(QMainWindow): def __init__(self, parentNone): super().__init__(parent) self.ui Ui_MainWindow() self.ui.setupUi(self) # 初始化应用 self._setup_ui() self._connect_signals() self._load_stylesheet() # 模型和资源初始化 self._init_detection_resources() def _setup_ui(self): 初始化UI界面设置 self.display_width 700 self.display_height 500 self.source_path None self.camera_active False self.video_capture None # 配置表格控件 table self.ui.tableWidget table.verticalHeader().setSectionResizeMode(QHeaderView.Fixed) table.verticalHeader().setDefaultSectionSize(40) table.setColumnWidth(0, 80) # ID列 table.setColumnWidth(1, 200) # 路径列 table.setColumnWidth(2, 150) # 类别列 table.setColumnWidth(3, 90) # 置信度列 table.setColumnWidth(4, 230) # 位置列 table.setSelectionBehavior(QAbstractItemView.SelectRows) table.verticalHeader().setVisible(False) table.setAlternatingRowColors(True) def _connect_signals(self): 连接按钮信号与槽函数 self.ui.PicBtn.clicked.connect(self._handle_image_input) self.ui.comboBox.activated.connect(self._update_selection) self.ui.VideoBtn.clicked.connect(self._handle_video_input) self.ui.CapBtn.clicked.connect(self._toggle_camera) self.ui.SaveBtn.clicked.connect(self._save_results) self.ui.ExitBtn.clicked.connect(QCoreApplication.quit) self.ui.FilesBtn.clicked.connect(self._process_image_batch) def _load_stylesheet(self): 加载CSS样式表 style_file UIProgram/style.css qss QSSLoader.read_qss_file(style_file) self.setStyleSheet(qss) def _init_detection_resources(self): 初始化检测相关资源 # 加载YOLOv8模型 self.detector YOLO(runs/detect/exp/weights/best.pt, taskdetect) self.detector(np.zeros((48, 48, 3))) # 预热模型 # 初始化字体和颜色 self.detection_font ImageFont.truetype(Font/platech.ttf, 25, 0) self.color_palette tools.Colors() # 初始化定时器 self.frame_timer QTimer() self.save_timer QTimer() def _handle_image_input(self): 处理单张图片输入 self._stop_video_capture() file_path, _ QFileDialog.getOpenFileName( self, 选择图片, ./, 图片文件 (*.jpg *.jpeg *.png)) if not file_path: return self._process_single_image(file_path) def _process_single_image(self, image_path): 处理并显示单张图片的检测结果 self.source_path image_path self.ui.comboBox.setEnabled(True) # 读取并检测图片 start_time time.time() detection_results self.detector(image_path)[0] processing_time time.time() - start_time # 解析检测结果 boxes detection_results.boxes.xyxy.tolist() self.detection_boxes [list(map(int, box)) for box in boxes] self.detection_classes detection_results.boxes.cls.int().tolist() confidences detection_results.boxes.conf.tolist() self.confidence_scores [f{score * 100:.2f}% for score in confidences] # 更新UI显示 self._update_detection_display(detection_results, processing_time) self._update_object_selection() self._show_detection_details() self._display_results_table(image_path) def _update_detection_display(self, results, process_time): 更新检测结果显示 # 显示处理时间 self.ui.time_lb.setText(f{process_time:.3f} s) # 获取带标注的图像 annotated_img results.plot() self.current_result annotated_img # 调整并显示图像 width, height self._calculate_display_size(annotated_img) resized_img cv2.resize(annotated_img, (width, height)) qimage tools.cvimg_to_qpiximg(resized_img) self.ui.label_show.setPixmap(qimage) self.ui.label_show.setAlignment(Qt.AlignCenter) self.ui.PiclineEdit.setText(self.source_path) # 更新检测数量 self.ui.label_nums.setText(str(len(self.detection_classes))) def _calculate_display_size(self, image): 计算适合显示的图像尺寸 img_height, img_width image.shape[:2] aspect_ratio img_width / img_height if aspect_ratio self.display_width / self.display_height: width self.display_width height int(width / aspect_ratio) else: height self.display_height width int(height * aspect_ratio) return width, height def _update_object_selection(self): 更新目标选择下拉框 options [全部] target_labels [ f{Config.names[cls_id]}_{idx} for idx, cls_id in enumerate(self.detection_classes) ] options.extend(target_labels) self.ui.comboBox.clear() self.ui.comboBox.addItems(options) def _show_detection_details(self, index0): 显示检测目标的详细信息 if not self.detection_boxes: self._clear_detection_details() return box self.detection_boxes[index] self.ui.type_lb.setText(Config.CH_names[self.detection_classes[index]]) self.ui.label_conf.setText(self.confidence_scores[index]) self.ui.label_xmin.setText(str(box[0])) self.ui.label_ymin.setText(str(box[1])) self.ui.label_xmax.setText(str(box[2])) self.ui.label_ymax.setText(str(box[3])) def _clear_detection_details(self): 清空检测详情显示 self.ui.type_lb.setText() self.ui.label_conf.setText() self.ui.label_xmin.setText() self.ui.label_ymin.setText() self.ui.label_xmax.setText() self.ui.label_ymax.setText() def _display_results_table(self, source_path): 在表格中显示检测结果 table self.ui.tableWidget table.setRowCount(0) table.clearContents() for idx, (box, cls_id, conf) in enumerate(zip( self.detection_boxes, self.detection_classes, self.confidence_scores)): row table.rowCount() table.insertRow(row) # 添加表格项 items [ QTableWidgetItem(str(row 1)), # ID QTableWidgetItem(source_path), # 路径 QTableWidgetItem(Config.CH_names[cls_id]), # 类别 QTableWidgetItem(conf), # 置信度 QTableWidgetItem(str(box)) # 位置坐标 ] # 设置文本居中 for item in [items[0], items[2], items[3]]: item.setTextAlignment(Qt.AlignCenter) # 添加到表格 for col, item in enumerate(items): table.setItem(row, col, item) table.scrollToBottom() def _process_image_batch(self): 批量处理图片 self._stop_video_capture() folder QFileDialog.getExistingDirectory(self, 选择图片文件夹, ./) if not folder: return self.source_path folder valid_extensions {jpg, png, jpeg, bmp} for filename in os.listdir(folder): filepath os.path.join(folder, filename) if (os.path.isfile(filepath) and filename.split(.)[-1].lower() in valid_extensions): self._process_single_image(filepath) QApplication.processEvents() # 保持UI响应 def _update_selection(self): 更新用户选择的检测目标显示 selection self.ui.comboBox.currentText() if selection 全部: boxes self.detection_boxes display_img self.current_result self._show_detection_details(0) else: idx int(selection.split(_)[-1]) boxes [self.detection_boxes[idx]] display_img self.detector(self.source_path)[0][idx].plot() self._show_detection_details(idx) # 更新显示 width, height self._calculate_display_size(display_img) resized_img cv2.resize(display_img, (width, height)) qimage tools.cvimg_to_qpiximg(resized_img) self.ui.label_show.clear() self.ui.label_show.setPixmap(qimage) self.ui.label_show.setAlignment(Qt.AlignCenter) def _handle_video_input(self): 处理视频输入 if self.camera_active: self._toggle_camera() video_path self._get_video_path() if not video_path: return self._start_video_processing(video_path) self.ui.comboBox.setEnabled(False) def _get_video_path(self): 获取视频文件路径 path, _ QFileDialog.getOpenFileName( self, 选择视频, ./, 视频文件 (*.avi *.mp4)) if path: self.source_path path self.ui.VideolineEdit.setText(path) return path return None def _start_video_processing(self, video_path): 开始处理视频流 self.video_capture cv2.VideoCapture(video_path) self.frame_timer.start(1) self.frame_timer.timeout.connect(self._process_video_frame) def _stop_video_capture(self): 停止视频捕获 if self.video_capture: self.video_capture.release() self.frame_timer.stop() self.camera_active False self.ui.CaplineEdit.setText(摄像头未开启) self.video_capture None def _process_video_frame(self): 处理视频帧 ret, frame self.video_capture.read() if not ret: self._stop_video_capture() return # 执行目标检测 start_time time.time() results self.detector(frame)[0] processing_time time.time() - start_time # 解析结果 self.detection_boxes results.boxes.xyxy.int().tolist() self.detection_classes results.boxes.cls.int().tolist() self.confidence_scores [f{conf * 100:.2f}% for conf in results.boxes.conf.tolist()] # 更新显示 self._update_detection_display(results, processing_time) self._update_object_selection() self._show_detection_details() self._display_results_table(self.source_path) def _toggle_camera(self): 切换摄像头状态 self.camera_active not self.camera_active if self.camera_active: self.ui.CaplineEdit.setText(摄像头开启) self.video_capture cv2.VideoCapture(0) self._start_video_processing(0) self.ui.comboBox.setEnabled(False) else: self.ui.CaplineEdit.setText(摄像头未开启) self.ui.label_show.clear() self._stop_video_capture() def _save_results(self): 保存检测结果 if not self.video_capture and not self.source_path: QMessageBox.information(self, 提示, 没有可保存的内容请先打开图片或视频) return if self.camera_active: QMessageBox.information(self, 提示, 无法保存摄像头实时视频) return if self.video_capture: self._save_video_result() else: self._save_image_result() def _save_video_result(self): 保存视频检测结果 confirm QMessageBox.question( self, 确认, 保存视频可能需要较长时间确定继续吗, QMessageBox.Yes | QMessageBox.No) if confirm QMessageBox.No: return self._stop_video_capture() saver VideoSaverThread( self.source_path, self.detector, self.ui.comboBox.currentText()) saver.start() saver.update_ui_signal.connect(self._update_progress) def _save_image_result(self): 保存图片检测结果 if os.path.isfile(self.source_path): # 处理单张图片 filename os.path.basename(self.source_path) name, ext filename.rsplit(., 1) save_name f{name}_detect_result.{ext} save_path os.path.join(Config.save_path, save_name) cv2.imwrite(save_path, self.current_result) QMessageBox.information( self, 完成, f图片已保存至: {save_path}) else: # 处理文件夹中的图片 valid_exts {jpg, png, jpeg, bmp} for filename in os.listdir(self.source_path): if filename.split(.)[-1].lower() in valid_exts: filepath os.path.join(self.source_path, filename) name, ext filename.rsplit(., 1) save_name f{name}_detect_result.{ext} save_path os.path.join(Config.save_path, save_name) results self.detector(filepath)[0] cv2.imwrite(save_path, results.plot()) QMessageBox.information( self, 完成, f所有图片已保存至: {Config.save_path}) def _update_progress(self, current, total): 更新保存进度 if current 1: self.progress_dialog ProgressBar(self) self.progress_dialog.show() if current total: self.progress_dialog.close() QMessageBox.information( self, 完成, f视频已保存至: {Config.save_path}) return if not self.progress_dialog.isVisible(): return percent int(current / total * 100) self.progress_dialog.setValue(current, total, percent) QApplication.processEvents() class VideoSaverThread(QThread): 视频保存线程 update_ui_signal pyqtSignal(int, int) def __init__(self, video_path, model, selection): super().__init__() self.video_path video_path self.detector model self.selection selection self.active True self.colors tools.Colors() def run(self): 执行视频保存 cap cv2.VideoCapture(self.video_path) fourcc cv2.VideoWriter_fourcc(*XVID) fps cap.get(cv2.CAP_PROP_FPS) size ( int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) filename os.path.basename(self.video_path) name, _ filename.split(.) save_path os.path.join( Config.save_path, f{name}_detect_result.avi) writer cv2.VideoWriter(save_path, fourcc, fps, size) total_frames int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) current_frame 0 while cap.isOpened() and self.active: current_frame 1 ret, frame cap.read() if not ret: break # 执行检测 results self.detector(frame)[0] frame results.plot() writer.write(frame) self.update_ui_signal.emit(current_frame, total_frames) # 释放资源 cap.release() writer.release() def stop(self): 停止保存过程 self.active False if __name__ __main__: app QApplication(sys.argv) window DetectionApp() window.show() sys.exit(app.exec_())七、项目演示与介绍视频基于深度学习的风力叶片缺陷检测系统YOLOv8YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习的风力叶片缺陷检测系统YOLOv8YOLO数据集UI界面Python项目源码模型