网站表格代码网站建设套餐
2026/2/22 5:07:24 网站建设 项目流程
网站表格代码,网站建设套餐,深圳网站制作的公司有哪些,国内最新消息新闻一、项目介绍 项目背景: 在公共场所、办公环境或特定场景#xff08;如考场、会议室#xff09;中#xff0c;检测吸烟、喝水或使用手机等行为对于维护秩序、保障安全或提高工作效率具有重要意义。传统的行为检测方法依赖于人工监控或简单的传感器检测#xff0c;效率较低…一、项目介绍项目背景:在公共场所、办公环境或特定场景如考场、会议室中检测吸烟、喝水或使用手机等行为对于维护秩序、保障安全或提高工作效率具有重要意义。传统的行为检测方法依赖于人工监控或简单的传感器检测效率较低且容易出错。基于深度学习的目标检测技术能够自动、高效地识别这些行为并在实时监控中提供准确的检测结果。项目目标:本项目旨在利用深度学习技术如 YOLOv10构建一个高效、准确的吸烟、喝水、手机检测系统。系统能够实时检测图像或视频中的吸烟、喝水或使用手机行为并输出检测结果。通过训练和优化模型系统能够在复杂背景下准确识别这些行为满足公共场所监控和管理的需求。技术栈:深度学习框架: PyTorch目标检测算法: YOLOv10数据处理: OpenCV, NumPy模型训练与评估: PyTorch Lightning, TensorBoard部署: ONNX, TensorRT (可选)项目流程:数据准备: 收集并标注吸烟、喝水、手机行为的图像数据划分为训练集和验证集。模型训练: 使用 YOLOv10 模型在训练集上进行训练调整超参数以优化模型性能。模型评估: 在验证集上评估模型性能计算精度、召回率、mAP等指标。模型优化: 通过数据增强、模型剪枝、量化等技术进一步优化模型。部署与应用: 将训练好的模型部署到实际应用场景中如公共场所监控系统、办公环境管理平台或移动端设备。基于深度学习YOLOv10的吸烟喝水手机识别检测系统YOLOv10YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv10的吸烟喝水手机识别检测系统YOLOv10YOLO数据集UI界面Python项目源码模型二、项目功能展示系统功能✅图片检测可对图片进行检测返回检测框及类别信息。✅视频检测支持视频文件输入检测视频中每一帧的情况。✅摄像头实时检测连接USB 摄像头实现实时监测。✅参数实时调节置信度和IoU阈值图片检测该功能允许用户通过单张图片进行目标检测。输入一张图片后YOLO模型会实时分析图像识别出其中的目标并在图像中框出检测到的目标输出带有目标框的图像。视频检测视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示适用于视频监控和分析等场景。摄像头实时检测该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用提供即时反馈。核心特点高精度基于YOLO模型提供精确的目标检测能力适用于不同类型的图像和视频。实时性特别优化的算法使得实时目标检测成为可能无论是在视频还是摄像头实时检测中响应速度都非常快。批量处理支持高效的批量图像和视频处理适合大规模数据分析。三、数据集介绍数据集内容:类别数量 (nc): 3 类类别名称: [smoke, drink, phone]数据总量: 3507 张图像训练集: 3157 张图像验证集: 350 张图像数据集来源:数据集通过多种途径收集包括公开数据集、网络爬取以及实际场景拍摄。为确保数据的多样性和泛化能力数据集中包含了不同场景、光照条件和行为姿态的图像。数据标注:每张图像中的行为吸烟、喝水、使用手机均使用边界框 (Bounding Box) 进行标注标注格式为 YOLO 格式 (class_id, x_center, y_center, width, height)。标注工具: LabelImg 或 CVAT。标注文件: 每个图像对应一个.txt文件存储标注信息。数据集特点:多样性: 数据集中包含 3 种行为类别吸烟、喝水、使用手机涵盖了不同场景如室内、室外、公共场所等和光照条件。挑战性: 部分图像包含复杂背景、遮挡、模糊等干扰因素以提高模型的鲁棒性。平衡性: 训练集和验证集的比例合理确保模型在训练和验证过程中能够充分学习并泛化。数据集配置文件data.yamltrain: .\datasets\images\train val: .\datasets\images\val test: .\datasets\images\test nc: 3 names: [smoke, drink, phone]数据集制作流程标注数据使用标注工具如LabelImg、CVAT等对图像中的目标进行标注。每个目标需要标出边界框并且标注类别。转换格式将标注的数据转换为YOLO格式。YOLO标注格式为每行object-class x_center y_center width height这些坐标是相对于图像尺寸的比例。分割数据集将数据集分为训练集、验证集和测试集通常的比例是80%训练集、10%验证集和10%测试集。准备标签文件为每张图片生成一个对应的标签文件确保标签文件与图片的命名一致。调整图像尺寸根据YOLO网络要求统一调整所有图像的尺寸如416x416或608x608。四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov10 python3.9激活虚拟环境conda activate yolov10安装cpu版本pytorchpip install torch torchvision torchaudiopycharm中配置anaconda安装所需要库pip install -r requirements.txt五、模型训练训练代码from ultralytics import YOLOv10 model_path yolov10s.pt data_path datasets/data.yaml if __name__ __main__: model YOLOv10(model_path) results model.train(datadata_path, epochs500, batch64, device0, workers0, projectruns/detect, nameexp, )根据实际情况更换模型 yolov10n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 yolov10s.yaml (small)小模型适合实时任务。 yolov10m.yaml (medium)中等大小模型兼顾速度和精度。 yolov10b.yaml (base)基本版模型适合大部分应用场景。 yolov10l.yaml (large)大型模型适合对精度要求高的任务。--batch 64每批次64张图像。--epochs 500训练500轮。--datasets/data.yaml数据集配置文件。--weights yolov10s.pt初始化模型权重yolov10s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog from PyQt5.QtCore import QThread, pyqtSignal from ultralytics import YOLOv10 from UiMain import UiMainWindow import time import os class DetectionThread(QThread): frame_received pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果 finished_signal pyqtSignal() # 线程完成信号 def __init__(self, model, source, conf, iou, parentNone): super().__init__(parent) self.model model self.source source self.conf conf self.iou iou self.running True def run(self): try: if isinstance(self.source, int) or self.source.endswith((.mp4, .avi, .mov)): # 视频或摄像头 cap cv2.VideoCapture(self.source) while self.running and cap.isOpened(): ret, frame cap.read() if not ret: break # 保存原始帧 original_frame frame.copy() # 检测 results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) # 发送信号 self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) # 控制帧率 time.sleep(0.03) # 约30fps cap.release() else: # 图片 frame cv2.imread(self.source) if frame is not None: original_frame frame.copy() results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) except Exception as e: print(fDetection error: {e}) finally: self.finished_signal.emit() def stop(self): self.running False class MainWindow(UiMainWindow): def __init__(self): super().__init__() # 初始化模型 self.model None self.detection_thread None self.current_image None self.current_result None self.video_writer None self.is_camera_running False self.is_video_running False self.last_detection_result None # 新增保存最后一次检测结果 # 连接按钮信号 self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) # 初始化模型 self.load_model() def load_model(self): try: model_name self.model_combo.currentText() self.model YOLOv10(f{model_name}.pt) # 自动下载或加载本地模型 self.update_status(f模型 {model_name} 加载成功) except Exception as e: QMessageBox.critical(self, 错误, f模型加载失败: {str(e)}) self.update_status(模型加载失败) def detect_image(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp)) if file_path: self.clear_results() self.current_image cv2.imread(file_path) self.current_image cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB) self.display_image(self.original_image_label, self.current_image) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测图片: {os.path.basename(file_path)}) def detect_video(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择视频, , 视频文件 (*.mp4 *.avi *.mov)) if file_path: self.clear_results() self.is_video_running True # 初始化视频写入器 cap cv2.VideoCapture(file_path) frame_width int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps cap.get(cv2.CAP_PROP_FPS) cap.release() # 创建保存路径 save_dir results os.makedirs(save_dir, exist_okTrue) timestamp time.strftime(%Y%m%d_%H%M%S) save_path os.path.join(save_dir, fresult_{timestamp}.mp4) fourcc cv2.VideoWriter_fourcc(*mp4v) self.video_writer cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height)) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测视频: {os.path.basename(file_path)}) def detect_camera(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return self.clear_results() self.is_camera_running True # 创建检测线程 (默认使用摄像头0) conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, 0, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(正在从摄像头检测...) def stop_detection(self): if self.detection_thread and self.detection_thread.isRunning(): self.detection_thread.stop() self.detection_thread.quit() self.detection_thread.wait() if self.video_writer: self.video_writer.release() self.video_writer None self.is_camera_running False self.is_video_running False self.update_status(检测已停止) def on_frame_received(self, original_frame, result_frame, detections): # 更新原始图像和结果图像 self.display_image(self.original_image_label, original_frame) self.display_image(self.result_image_label, result_frame) # 保存当前结果帧用于后续保存 self.last_detection_result result_frame # 新增保存检测结果 # 更新表格 self.clear_results() for class_name, confidence, x, y in detections: self.add_detection_result(class_name, confidence, x, y) # 保存视频帧 if self.video_writer: self.video_writer.write(cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR)) def on_detection_finished(self): if self.video_writer: self.video_writer.release() self.video_writer None self.update_status(视频检测完成结果已保存) elif self.is_camera_running: self.update_status(摄像头检测已停止) else: self.update_status(图片检测完成) def save_result(self): if not hasattr(self, last_detection_result) or self.last_detection_result is None: QMessageBox.warning(self, 警告, 没有可保存的检测结果) return save_dir results os.makedirs(save_dir, exist_okTrue) timestamp time.strftime(%Y%m%d_%H%M%S) if self.is_camera_running or self.is_video_running: # 保存当前帧为图片 save_path os.path.join(save_dir, fsnapshot_{timestamp}.jpg) cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f截图已保存: {save_path}) else: # 保存图片检测结果 save_path os.path.join(save_dir, fresult_{timestamp}.jpg) cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f检测结果已保存: {save_path}) def closeEvent(self, event): self.stop_detection() event.accept() if __name__ __main__: app QApplication(sys.argv) # 设置应用程序样式 app.setStyle(Fusion) # 创建并显示主窗口 window MainWindow() window.show() sys.exit(app.exec_())七、项目基于深度学习YOLOv10的吸烟喝水手机识别检测系统YOLOv10YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv10的吸烟喝水手机识别检测系统YOLOv10YOLO数据集UI界面Python项目源码模型

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询