2026/2/18 8:38:17
网站建设
项目流程
展开描述建设一个网站的具体步骤,宣传页面怎么制作,wordpress不登录看不到文章,没电脑可以建网站吗一、项目介绍
摘要
本项目基于先进的YOLOv8目标检测算法#xff0c;开发了一套专门用于森林火灾早期预警的红外烟雾检测系统。系统采用双类别检测框架(nc2)#xff0c;能够准确识别fire(火焰)和smoke(烟雾)两类关键目标。项目构建了包含2000张红外…一、项目介绍摘要本项目基于先进的YOLOv8目标检测算法开发了一套专门用于森林火灾早期预警的红外烟雾检测系统。系统采用双类别检测框架(nc2)能够准确识别fire(火焰)和smoke(烟雾)两类关键目标。项目构建了包含2000张红外图像的专业数据集其中训练集1600张、验证集200张、测试集200张确保了模型训练的充分性和评估的可靠性。该系统通过处理红外摄像头采集的实时图像流能够实现森林区域的24小时全天候监测在火灾初期即可发现火源和烟雾迹象为森林防火提供了一种高效、精准的智能化解决方案。实验结果表明本系统在测试集上达到了较高的检测精度和实时性能能够满足森林防火监测的实时性要求。项目意义森林火灾是全球范围内最具破坏性的自然灾害之一每年造成巨大的生态损失和经济损失。传统的森林火灾监测主要依靠人工巡逻和瞭望塔观察存在监测范围有限、反应滞后、夜间监测困难等问题。本项目的开发具有多方面的重要意义早期预警价值系统能够在火灾初期阶段通常是最关键的扑救窗口期检测到微弱的烟雾和火源比传统方法提前发出警报为灭火行动争取宝贵时间。烟雾检测尤其重要因为烟雾往往比明火更早出现且传播范围更广。全天候监测能力采用红外成像技术克服了可见光成像在夜间、雾天等低能见度条件下的局限性实现了真正意义上的24小时不间断监测。红外传感器对热辐射敏感能够穿透一定程度的烟雾和植被遮挡提高火灾检测的可靠性。大范围覆盖优势结合无人机或固定监控点部署单套系统可覆盖数平方公里范围的林区监测效率远高于人工方式特别适合地形复杂、人迹罕至的重点防火区域。智能分析功能基于YOLOv8的深度学习算法不仅能检测火灾特征还能通过烟雾扩散方向、火焰强度变化等分析火势发展趋势为指挥决策提供数据支持。系统可集成风速、湿度等环境参数实现更全面的火灾风险评估。生态保护价值及时有效的火灾防控能够保护森林生态系统减少碳排放维护生物多样性显著降低生态破坏程度。经济效益显著相比火灾造成的直接经济损失和后续生态恢复成本部署智能监测系统的投入产出比极高。系统还可减少人力巡逻成本优化防火资源分配。技术示范作用本项目将最先进的YOLOv8算法应用于专业领域为计算机视觉在环境保护中的创新应用提供了范例对推动AI技术在灾害防治领域的落地具有参考价值。未来该系统可通过增加多光谱成像、三维定位等功能进一步升级并与卫星遥感、地面传感器网络形成立体化监测体系全面提升森林火灾防控的智能化水平。项目的技术路线也可拓展应用于草原火灾、工业火灾等其他场景具有广阔的应用前景和社会价值。目录一、项目介绍摘要项目意义二、项目功能展示系统功能图片检测视频检测摄像头实时检测三、数据集介绍数据集概述数据集特点数据集配置文件数据集制作流程四、项目环境配置创建虚拟环境pycharm中配置anaconda安装所需要库五、模型训练训练代码训练结果六、核心代码编辑七、项目源码(视频简介内)基于深度学习YOLOv8的森林火灾烟雾红外检测系统YOLOv8YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv8的森林火灾烟雾红外检测系统YOLOv8YOLO数据集UI界面Python项目源码模型二、项目功能展示系统功能✅图片检测可对图片进行检测返回检测框及类别信息。✅视频检测支持视频文件输入检测视频中每一帧的情况。✅摄像头实时检测连接USB 摄像头实现实时监测。✅参数实时调节置信度和IoU阈值图片检测该功能允许用户通过单张图片进行目标检测。输入一张图片后YOLO模型会实时分析图像识别出其中的目标并在图像中框出检测到的目标输出带有目标框的图像。批量图片检测用户可以一次性上传多个图片进行批量处理。该功能支持对多个图像文件进行并行处理并返回每张图像的目标检测结果适用于需要大规模处理图像数据的应用场景。视频检测视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示适用于视频监控和分析等场景。摄像头实时检测该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用提供即时反馈。核心特点高精度基于YOLO模型提供精确的目标检测能力适用于不同类型的图像和视频。实时性特别优化的算法使得实时目标检测成为可能无论是在视频还是摄像头实时检测中响应速度都非常快。批量处理支持高效的批量图像和视频处理适合大规模数据分析。三、数据集介绍数据集概述本项目构建了森林火灾红外专项数据集共包含2000张高质量标注红外图像按照8:1:1的比例划分为训练集(1600张)、验证集(200张)和测试集(200张)。数据集涵盖两类关键目标火灾(fire)不同发展阶段阴燃、明火、大火的火场区域烟雾(smoke)各类形态薄雾、浓烟、上升烟柱等的烟雾区域数据集特点多源数据融合数据集整合了无人机航拍、固定监控设备、卫星遥感等多种来源的红外图像确保数据多样性。全时段覆盖包含白天、夜晚、黄昏等不同时段的样本验证模型的时间鲁棒性。多气候条件涵盖晴天、雨天、雾天、雪天等多种气象条件下的火灾样本。多地形场景包含山地、平原、林地、灌木丛等不同地形环境下的火灾特征。多光谱数据部分样本包含长波红外(LWIR)和中波红外(MWIR)双波段数据提供更丰富的热特征信息。精细标注采用像素级标注边界对部分重叠目标和半透明烟雾进行了精确区分标注。干扰样本丰富包含阳光反射、热源设备、动物热源等常见干扰样本增强模型抗干扰能力。数据集配置文件数据集采用YOLO格式进行组织配置文件内容如下# YOLOv8森林火灾红外检测数据集配置文件 path: ../datasets/forest_fire_IR train: images/train # 1600张 val: images/val # 200张 test: images/test # 200张 # 检测类别 nc: 2 names: [fire, smoke]数据集制作流程原始数据采集使用专业红外热像仪采集原始数据在多个自然保护区建立固定监测点进行长期数据收集联合消防部门获取真实火灾现场的红外影像资料通过无人机搭载红外相机进行航拍数据补充数据预处理温度值校准根据环境温度校正原始红外数据动态范围调整优化温度显示范围以突出火情特征时间同步对齐多源数据的采集时间戳地理坐标标注记录每张图像的GPS位置信息数据增强策略空间增强随机旋转、翻转、裁剪辐射增强模拟不同大气透射率下的辐射衰减噪声注入添加传感器噪声和大气扰动噪声多尺度训练采用4种不同分辨率进行训练四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov8 python3.9激活虚拟环境conda activate yolov8安装cpu版本pytorchpip install torch torchvision torchaudiopycharm中配置anaconda安装所需要库pip install -r requirements.txt五、模型训练训练代码from ultralytics import YOLO model_path yolov8s.pt data_path datasets/data.yaml if __name__ __main__: model YOLO(model_path) results model.train(datadata_path, epochs500, batch64, device0, workers0, projectruns/detect, nameexp, )根据实际情况更换模型 yolov8n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 yolov8s.yaml (small)小模型适合实时任务。 yolov8m.yaml (medium)中等大小模型兼顾速度和精度。 yolov8b.yaml (base)基本版模型适合大部分应用场景。 yolov8l.yaml (large)大型模型适合对精度要求高的任务。--batch 64每批次64张图像。--epochs 500训练500轮。--datasets/data.yaml数据集配置文件。--weights yolov8s.pt初始化模型权重yolov8s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import Qt, QTimer from PyQt5.QtGui import QImage, QPixmap, QIcon from PyQt5.QtWidgets import (QFileDialog, QMessageBox, QTableWidgetItem, QStyledItemDelegate, QHeaderView) import cv2 import numpy as np from ultralytics import YOLO import os import datetime import sys class CenteredDelegate(QStyledItemDelegate): def initStyleOption(self, option, index): super().initStyleOption(option, index) option.displayAlignment Qt.AlignCenter class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName(MainWindow) MainWindow.resize(1400, 900) MainWindow.setWindowTitle(YOLOv8 目标检测系统) # 设置窗口图标 if hasattr(sys, _MEIPASS): icon_path os.path.join(sys._MEIPASS, icon.ico) else: icon_path icon.ico if os.path.exists(icon_path): MainWindow.setWindowIcon(QIcon(icon_path)) self.centralwidget QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName(centralwidget) # 主布局 self.main_layout QtWidgets.QHBoxLayout(self.centralwidget) self.main_layout.setContentsMargins(10, 10, 10, 10) self.main_layout.setSpacing(15) # 左侧布局 (图像显示) self.left_layout QtWidgets.QVBoxLayout() self.left_layout.setSpacing(15) # 原始图像组 self.original_group QtWidgets.QGroupBox(原始图像) self.original_group.setMinimumHeight(400) self.original_img_label QtWidgets.QLabel() self.original_img_label.setAlignment(QtCore.Qt.AlignCenter) self.original_img_label.setText(等待加载图像...) self.original_img_label.setStyleSheet(background-color: #F0F0F0; border: 1px solid #CCCCCC;) original_layout QtWidgets.QVBoxLayout() original_layout.addWidget(self.original_img_label) self.original_group.setLayout(original_layout) self.left_layout.addWidget(self.original_group) # 检测结果图像组 self.result_group QtWidgets.QGroupBox(检测结果) self.result_group.setMinimumHeight(400) self.result_img_label QtWidgets.QLabel() self.result_img_label.setAlignment(QtCore.Qt.AlignCenter) self.result_img_label.setText(检测结果将显示在这里) self.result_img_label.setStyleSheet(background-color: #F0F0F0; border: 1px solid #CCCCCC;) result_layout QtWidgets.QVBoxLayout() result_layout.addWidget(self.result_img_label) self.result_group.setLayout(result_layout) self.left_layout.addWidget(self.result_group) self.main_layout.addLayout(self.left_layout, stretch3) # 右侧布局 (控制面板) self.right_layout QtWidgets.QVBoxLayout() self.right_layout.setSpacing(15) # 模型选择组 self.model_group QtWidgets.QGroupBox(模型设置) self.model_group.setStyleSheet(QGroupBox { font-weight: bold; }) self.model_layout QtWidgets.QVBoxLayout() # 模型选择 self.model_combo QtWidgets.QComboBox() self.model_combo.addItems([best.pt]) self.model_combo.setCurrentIndex(0) # 加载模型按钮 self.load_model_btn QtWidgets.QPushButton( 加载模型) self.load_model_btn.setIcon(QIcon.fromTheme(document-open)) self.load_model_btn.setStyleSheet( QPushButton { padding: 8px; background-color: #4CAF50; color: white; border-radius: 4px; } QPushButton:hover { background-color: #45a049; } ) self.model_layout.addWidget(self.model_combo) self.model_layout.addWidget(self.load_model_btn) self.model_group.setLayout(self.model_layout) self.right_layout.addWidget(self.model_group) # 参数设置组 self.param_group QtWidgets.QGroupBox(检测参数) self.param_group.setStyleSheet(QGroupBox { font-weight: bold; }) self.param_layout QtWidgets.QFormLayout() self.param_layout.setLabelAlignment(Qt.AlignLeft) self.param_layout.setFormAlignment(Qt.AlignLeft) self.param_layout.setVerticalSpacing(15) # 置信度滑块 self.conf_slider QtWidgets.QSlider(Qt.Horizontal) self.conf_slider.setRange(1, 99) self.conf_slider.setValue(25) self.conf_value QtWidgets.QLabel(0.25) self.conf_value.setAlignment(Qt.AlignCenter) self.conf_value.setStyleSheet(font-weight: bold; color: #2196F3;) # IoU滑块 self.iou_slider QtWidgets.QSlider(Qt.Horizontal) self.iou_slider.setRange(1, 99) self.iou_slider.setValue(45) self.iou_value QtWidgets.QLabel(0.45) self.iou_value.setAlignment(Qt.AlignCenter) self.iou_value.setStyleSheet(font-weight: bold; color: #2196F3;) self.param_layout.addRow(置信度阈值:, self.conf_slider) self.param_layout.addRow(当前值:, self.conf_value) self.param_layout.addRow(QtWidgets.QLabel()) # 空行 self.param_layout.addRow(IoU阈值:, self.iou_slider) self.param_layout.addRow(当前值:, self.iou_value) self.param_group.setLayout(self.param_layout) self.right_layout.addWidget(self.param_group) # 功能按钮组 self.func_group QtWidgets.QGroupBox(检测功能) self.func_group.setStyleSheet(QGroupBox { font-weight: bold; }) self.func_layout QtWidgets.QVBoxLayout() self.func_layout.setSpacing(10) # 图片检测按钮 self.image_btn QtWidgets.QPushButton( 图片检测) self.image_btn.setIcon(QIcon.fromTheme(image-x-generic)) # 视频检测按钮 self.video_btn QtWidgets.QPushButton( 视频检测) self.video_btn.setIcon(QIcon.fromTheme(video-x-generic)) # 摄像头检测按钮 self.camera_btn QtWidgets.QPushButton( 摄像头检测) self.camera_btn.setIcon(QIcon.fromTheme(camera-web)) # 停止检测按钮 self.stop_btn QtWidgets.QPushButton( 停止检测) self.stop_btn.setIcon(QIcon.fromTheme(process-stop)) self.stop_btn.setEnabled(False) # 保存结果按钮 self.save_btn QtWidgets.QPushButton( 保存结果) self.save_btn.setIcon(QIcon.fromTheme(document-save)) self.save_btn.setEnabled(False) # 设置按钮样式 button_style QPushButton { padding: 10px; background-color: #2196F3; color: white; border: none; border-radius: 4px; text-align: left; } QPushButton:hover { background-color: #0b7dda; } QPushButton:disabled { background-color: #cccccc; } for btn in [self.image_btn, self.video_btn, self.camera_btn, self.stop_btn, self.save_btn]: btn.setStyleSheet(button_style) self.func_layout.addWidget(btn) self.func_group.setLayout(self.func_layout) self.right_layout.addWidget(self.func_group) # 检测结果表格组 self.table_group QtWidgets.QGroupBox(检测结果详情) self.table_group.setStyleSheet(QGroupBox { font-weight: bold; }) self.table_layout QtWidgets.QVBoxLayout() self.result_table QtWidgets.QTableWidget() self.result_table.setColumnCount(4) self.result_table.setHorizontalHeaderLabels([类别, 置信度, 左上坐标, 右下坐标]) self.result_table.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.result_table.verticalHeader().setVisible(False) self.result_table.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows) self.result_table.setEditTriggers(QtWidgets.QAbstractItemView.NoEditTriggers) # 设置表格样式 self.result_table.setStyleSheet( QTableWidget { border: 1px solid #e0e0e0; alternate-background-color: #f5f5f5; } QHeaderView::section { background-color: #2196F3; color: white; padding: 5px; border: none; } QTableWidget::item { padding: 5px; } ) # 设置居中代理 delegate CenteredDelegate(self.result_table) self.result_table.setItemDelegate(delegate) self.table_layout.addWidget(self.result_table) self.table_group.setLayout(self.table_layout) self.right_layout.addWidget(self.table_group, stretch1) self.main_layout.addLayout(self.right_layout, stretch1) MainWindow.setCentralWidget(self.centralwidget) # 状态栏 self.statusbar QtWidgets.QStatusBar(MainWindow) self.statusbar.setStyleSheet(QStatusBar { border-top: 1px solid #c0c0c0; }) MainWindow.setStatusBar(self.statusbar) # 初始化变量 self.model None self.cap None self.timer QTimer() self.is_camera_running False self.current_image None self.current_result None self.video_writer None self.output_path output # 创建输出目录 if not os.path.exists(self.output_path): os.makedirs(self.output_path) # 连接信号槽 self.load_model_btn.clicked.connect(self.load_model) self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) self.conf_slider.valueChanged.connect(self.update_conf_value) self.iou_slider.valueChanged.connect(self.update_iou_value) self.timer.timeout.connect(self.update_camera_frame) # 设置全局样式 self.set_style() def set_style(self): style QMainWindow { background-color: #f5f5f5; } QGroupBox { border: 1px solid #e0e0e0; border-radius: 5px; margin-top: 10px; padding-top: 15px; } QGroupBox::title { subcontrol-origin: margin; left: 10px; padding: 0 3px; } QLabel { color: #333333; } QComboBox { padding: 5px; border: 1px solid #cccccc; border-radius: 3px; } QSlider::groove:horizontal { height: 6px; background: #e0e0e0; border-radius: 3px; } QSlider::handle:horizontal { width: 16px; height: 16px; margin: -5px 0; background: #2196F3; border-radius: 8px; } QSlider::sub-page:horizontal { background: #2196F3; border-radius: 3px; } self.centralwidget.setStyleSheet(style) def load_model(self): model_name self.model_combo.currentText().split( )[0] try: self.model YOLO(model_name) self.statusbar.showMessage(f模型 {model_name} 加载成功, 3000) self.image_btn.setEnabled(True) self.video_btn.setEnabled(True) self.camera_btn.setEnabled(True) except Exception as e: QMessageBox.critical(None, 错误, f模型加载失败: {str(e)}) def update_conf_value(self): conf self.conf_slider.value() / 100 self.conf_value.setText(f{conf:.2f}) def update_iou_value(self): iou self.iou_slider.value() / 100 self.iou_value.setText(f{iou:.2f}) def detect_image(self): if self.model is None: QMessageBox.warning(None, 警告, 请先加载模型) return file_path, _ QFileDialog.getOpenFileName( None, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp);;所有文件 (*) ) if file_path: try: # 读取图片 img cv2.imread(file_path) img cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 显示原始图片 self.display_image(img, self.original_img_label) self.current_image img.copy() # 检测图片 conf self.conf_slider.value() / 100 iou self.iou_slider.value() / 100 self.statusbar.showMessage(正在检测图片...) QtWidgets.QApplication.processEvents() # 更新UI results self.model.predict(img, confconf, iouiou) result_img results[0].plot() # 显示检测结果 self.display_image(result_img, self.result_img_label) self.current_result result_img.copy() # 更新结果表格 self.update_result_table(results[0]) self.save_btn.setEnabled(True) self.statusbar.showMessage(f图片检测完成: {os.path.basename(file_path)}, 3000) except Exception as e: QMessageBox.critical(None, 错误, f图片检测失败: {str(e)}) self.statusbar.showMessage(图片检测失败, 3000) def detect_video(self): if self.model is None: QMessageBox.warning(None, 警告, 请先加载模型) return file_path, _ QFileDialog.getOpenFileName( None, 选择视频, , 视频文件 (*.mp4 *.avi *.mov *.mkv);;所有文件 (*) ) if file_path: try: self.cap cv2.VideoCapture(file_path) if not self.cap.isOpened(): raise Exception(无法打开视频文件) # 获取视频信息 fps self.cap.get(cv2.CAP_PROP_FPS) width int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 创建视频写入器 timestamp datetime.datetime.now().strftime(%Y%m%d_%H%M%S) output_file os.path.join(self.output_path, foutput_{timestamp}.mp4) fourcc cv2.VideoWriter_fourcc(*mp4v) self.video_writer cv2.VideoWriter(output_file, fourcc, fps, (width, height)) # 启用停止按钮禁用其他按钮 self.stop_btn.setEnabled(True) self.save_btn.setEnabled(True) self.image_btn.setEnabled(False) self.video_btn.setEnabled(False) self.camera_btn.setEnabled(False) # 开始处理视频 self.timer.start(30) # 30ms间隔 self.statusbar.showMessage(f正在处理视频: {os.path.basename(file_path)}...) except Exception as e: QMessageBox.critical(None, 错误, f视频检测失败: {str(e)}) self.statusbar.showMessage(视频检测失败, 3000)七、项目源码(视频简介内)完整全部资源文件包括测试图片py文件训练数据集、训练代码、界面代码等这里已打包上传至博主的面包多平台见可参考博客与视频已将所有涉及的文件同时打包到里面点击即可运行完整文件截图如下演示与介绍视频基于深度学习YOLOv8的森林火灾烟雾红外检测系统YOLOv8YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv8的森林火灾烟雾红外检测系统YOLOv8YOLO数据集UI界面Python项目源码模型