2026/2/22 17:32:57
网站建设
项目流程
风险网站怎么解决方法,电子商务网站建设与管理课后答案,模板网站修改,北京 网站代运营一、项目介绍
摘要
本项目基于YOLOv8目标检测算法开发了一套高效的奶牛行为自动检测系统#xff0c;专门用于识别和分类奶牛的三种典型行为状态#xff1a;站立、行走和卧倒。系统使用了一个包含4932张标注图像的专业奶牛行为数据集#xff0c;其中训练集3946张#xff0…一、项目介绍摘要本项目基于YOLOv8目标检测算法开发了一套高效的奶牛行为自动检测系统专门用于识别和分类奶牛的三种典型行为状态站立、行走和卧倒。系统使用了一个包含4932张标注图像的专业奶牛行为数据集其中训练集3946张验证集和测试集各493张确保了模型的训练充分性和评估可靠性。通过深度学习技术的应用该系统能够实现对奶牛行为的实时、自动化监测准确率达到了行业领先水平。本系统不仅为畜牧业提供了智能化管理工具也为动物行为学研究提供了数据支持具有重要的实践应用价值和科研意义。项目意义1. 畜牧业生产效率提升传统奶牛行为观察主要依靠人工完成不仅效率低下而且容易因疲劳或主观因素导致误判。本系统的应用将彻底改变这一状况实现24小时不间断的自动化监测显著提高牧场管理效率。通过准确识别奶牛行为状态牧场管理者可以及时了解奶牛健康状况如卧倒时间异常可能预示疾病精确掌握奶牛活动规律优化饲喂和挤奶时间安排减少人工观察成本降低劳动力投入实现基于数据的精准养殖决策2. 动物福利保障奶牛行为是反映其生理状态和福利水平的重要指标。本系统的持续监测能力可以早期发现异常行为预防疾病发生确保奶牛有足够的休息时间通过卧倒行为监测监控群体社交行为预防欺凌现象为改善畜舍环境提供数据支持3. 科研价值在动物行为学研究领域本系统提供了大量标准化、可量化的行为观测数据长期连续的行为记录能力精确的时间序列分析基础群体行为动态研究的新方法4. 技术创新价值本项目在技术层面实现了多项创新针对农业场景优化YOLOv8模型提高了复杂环境下的检测鲁棒性开发了专门针对奶牛行为特点的识别算法建立了高质量的奶牛行为标注数据集解决了光照变化、遮挡等实际应用难题5. 经济效益系统的应用将带来显著的经济效益通过早期疾病发现减少治疗成本优化管理提高产奶量降低人力成本延长奶牛生产年限6. 行业示范作用作为智慧农业的典型应用本项目展示了人工智能技术与传统畜牧业深度融合的可能性为整个畜牧业的数字化转型提供了可复制的技术方案和实施经验。综上所述YOLOv8奶牛行为检测系统的开发不仅具有直接的实用价值还将推动畜牧业向更加智能化、精准化的方向发展对提升我国现代农业技术水平具有重要意义。基于深度学习的奶牛行为检测系统YOLOv8YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习的奶牛行为检测系统YOLOv8YOLO数据集UI界面Python项目源码模型二、项目功能展示系统功能✅图片检测可对单张图片进行检测返回检测框及类别信息。✅批量图片检测支持文件夹输入一次性检测多张图片生成批量检测结果。✅视频检测支持视频文件输入检测视频中每一帧的情况。✅摄像头实时检测连接USB 摄像头实现实时监测图片检测该功能允许用户通过单张图片进行目标检测。输入一张图片后YOLO模型会实时分析图像识别出其中的目标并在图像中框出检测到的目标输出带有目标框的图像。批量图片检测用户可以一次性上传多个图片进行批量处理。该功能支持对多个图像文件进行并行处理并返回每张图像的目标检测结果适用于需要大规模处理图像数据的应用场景。视频检测视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示适用于视频监控和分析等场景。摄像头实时检测该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用提供即时反馈。核心特点高精度基于YOLO模型提供精确的目标检测能力适用于不同类型的图像和视频。实时性特别优化的算法使得实时目标检测成为可能无论是在视频还是摄像头实时检测中响应速度都非常快。批量处理支持高效的批量图像和视频处理适合大规模数据分析。三、数据集介绍数据集名称: 奶牛行为检测数据集数据集类别: 3类类别名称: [站立, 行走, 卧倒]数据集划分:训练集: 3946 张图像训练集用于训练YOLOv8模型使其能够学习并识别奶牛三种行为状态的特征。训练集的图像涵盖了不同光照条件、背景环境、奶牛的不同姿态以及行为变化以确保模型的泛化能力。验证集: 493 张图像验证集用于在训练过程中评估模型的性能帮助调整超参数和防止过拟合。验证集的图像与训练集类似但独立于训练集确保模型在未见过的数据上也能表现良好。测试集: 493 张图像测试集用于最终评估模型的性能反映模型在实际应用中的表现。测试集的图像是完全独立的确保评估结果的客观性和准确性。数据集特点:高质量标注: 每张图像都经过精确的标注标注信息包括奶牛的行为类别和边界框位置确保模型能够准确学习目标特征。多样性: 数据集中的图像涵盖了不同光照条件如白天、夜晚、背景环境如室内、室外、奶牛的不同姿态以及行为变化确保模型能够适应各种实际场景。类别平衡: 数据集中三种行为类别的样本数量相对平衡避免了类别不平衡问题对模型性能的影响。应用场景:智能养殖:实时监控奶牛的行为状态帮助养殖场管理者优化奶牛的健康管理如疾病预防、发情检测和产奶量预测。动物行为研究:为动物行为研究人员提供数据支持帮助研究奶牛的行为模式及其与健康、生产性能的关系。畜牧业管理:通过检测奶牛的行为状态优化饲养管理流程如饲料投放、运动管理和环境改善提高生产效率。技术优势高精度检测: 基于YOLOv8目标检测算法能够实现高精度的奶牛行为检测。实时性: 系统支持实时检测能够快速处理图像并输出检测结果。鲁棒性: 模型经过多样化数据训练能够适应不同光照条件、背景环境和奶牛姿态。易用性: 系统可部署于多种硬件平台如嵌入式设备、监控摄像头、服务器等满足不同场景的需求。数据集配置文件data.yamltrain: .\datasets\images\train val: .\datasets\images\val test: .\datasets\images\test nc: 3 names: [0, 1, 2]数据集制作流程标注数据使用标注工具如LabelImg、CVAT等对图像中的目标进行标注。每个目标需要标出边界框并且标注类别。转换格式将标注的数据转换为YOLO格式。YOLO标注格式为每行object-class x_center y_center width height这些坐标是相对于图像尺寸的比例。分割数据集将数据集分为训练集、验证集和测试集通常的比例是80%训练集、10%验证集和10%测试集。准备标签文件为每张图片生成一个对应的标签文件确保标签文件与图片的命名一致。调整图像尺寸根据YOLO网络要求统一调整所有图像的尺寸如416x416或608x608。四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov8 python3.9激活虚拟环境conda activate yolov8安装cpu版本pytorchpip install torch torchvision torchaudiopycharm中配置anaconda安装所需要库pip install -r requirements.txt五、模型训练训练代码from ultralytics import YOLO model_path yolov8s.pt data_path datasets/data.yaml if __name__ __main__: model YOLO(model_path) results model.train(datadata_path, epochs500, batch64, device0, workers0, projectruns/detect, nameexp, )根据实际情况更换模型 yolov8n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 yolov8s.yaml (small)小模型适合实时任务。 yolov8m.yaml (medium)中等大小模型兼顾速度和精度。 yolov8b.yaml (base)基本版模型适合大部分应用场景。 yolov8l.yaml (large)大型模型适合对精度要求高的任务。--batch 64每批次64张图像。--epochs 500训练500轮。--datasets/data.yaml数据集配置文件。--weights yolov8s.pt初始化模型权重yolov8s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码# -*- coding: utf-8 -*- import os import sys import time import cv2 import numpy as np from PIL import ImageFont from PyQt5.QtCore import Qt, QTimer, QThread, pyqtSignal, QCoreApplication from PyQt5.QtWidgets import (QApplication, QMainWindow, QFileDialog, QMessageBox, QWidget, QHeaderView, QTableWidgetItem, QAbstractItemView) from ultralytics import YOLO # 自定义模块导入 sys.path.append(UIProgram) from UIProgram.UiMain import Ui_MainWindow from UIProgram.QssLoader import QSSLoader from UIProgram.precess_bar import ProgressBar import detect_tools as tools import Config class DetectionApp(QMainWindow): def __init__(self, parentNone): super().__init__(parent) self.ui Ui_MainWindow() self.ui.setupUi(self) # 初始化应用 self._setup_ui() self._connect_signals() self._load_stylesheet() # 模型和资源初始化 self._init_detection_resources() def _setup_ui(self): 初始化UI界面设置 self.display_width 700 self.display_height 500 self.source_path None self.camera_active False self.video_capture None # 配置表格控件 table self.ui.tableWidget table.verticalHeader().setSectionResizeMode(QHeaderView.Fixed) table.verticalHeader().setDefaultSectionSize(40) table.setColumnWidth(0, 80) # ID列 table.setColumnWidth(1, 200) # 路径列 table.setColumnWidth(2, 150) # 类别列 table.setColumnWidth(3, 90) # 置信度列 table.setColumnWidth(4, 230) # 位置列 table.setSelectionBehavior(QAbstractItemView.SelectRows) table.verticalHeader().setVisible(False) table.setAlternatingRowColors(True) def _connect_signals(self): 连接按钮信号与槽函数 self.ui.PicBtn.clicked.connect(self._handle_image_input) self.ui.comboBox.activated.connect(self._update_selection) self.ui.VideoBtn.clicked.connect(self._handle_video_input) self.ui.CapBtn.clicked.connect(self._toggle_camera) self.ui.SaveBtn.clicked.connect(self._save_results) self.ui.ExitBtn.clicked.connect(QCoreApplication.quit) self.ui.FilesBtn.clicked.connect(self._process_image_batch) def _load_stylesheet(self): 加载CSS样式表 style_file UIProgram/style.css qss QSSLoader.read_qss_file(style_file) self.setStyleSheet(qss) def _init_detection_resources(self): 初始化检测相关资源 # 加载YOLOv8模型 self.detector YOLO(runs/detect/exp/weights/best.pt, taskdetect) self.detector(np.zeros((48, 48, 3))) # 预热模型 # 初始化字体和颜色 self.detection_font ImageFont.truetype(Font/platech.ttf, 25, 0) self.color_palette tools.Colors() # 初始化定时器 self.frame_timer QTimer() self.save_timer QTimer() def _handle_image_input(self): 处理单张图片输入 self._stop_video_capture() file_path, _ QFileDialog.getOpenFileName( self, 选择图片, ./, 图片文件 (*.jpg *.jpeg *.png)) if not file_path: return self._process_single_image(file_path) def _process_single_image(self, image_path): 处理并显示单张图片的检测结果 self.source_path image_path self.ui.comboBox.setEnabled(True) # 读取并检测图片 start_time time.time() detection_results self.detector(image_path)[0] processing_time time.time() - start_time # 解析检测结果 boxes detection_results.boxes.xyxy.tolist() self.detection_boxes [list(map(int, box)) for box in boxes] self.detection_classes detection_results.boxes.cls.int().tolist() confidences detection_results.boxes.conf.tolist() self.confidence_scores [f{score * 100:.2f}% for score in confidences] # 更新UI显示 self._update_detection_display(detection_results, processing_time) self._update_object_selection() self._show_detection_details() self._display_results_table(image_path) def _update_detection_display(self, results, process_time): 更新检测结果显示 # 显示处理时间 self.ui.time_lb.setText(f{process_time:.3f} s) # 获取带标注的图像 annotated_img results.plot() self.current_result annotated_img # 调整并显示图像 width, height self._calculate_display_size(annotated_img) resized_img cv2.resize(annotated_img, (width, height)) qimage tools.cvimg_to_qpiximg(resized_img) self.ui.label_show.setPixmap(qimage) self.ui.label_show.setAlignment(Qt.AlignCenter) self.ui.PiclineEdit.setText(self.source_path) # 更新检测数量 self.ui.label_nums.setText(str(len(self.detection_classes))) def _calculate_display_size(self, image): 计算适合显示的图像尺寸 img_height, img_width image.shape[:2] aspect_ratio img_width / img_height if aspect_ratio self.display_width / self.display_height: width self.display_width height int(width / aspect_ratio) else: height self.display_height width int(height * aspect_ratio) return width, height def _update_object_selection(self): 更新目标选择下拉框 options [全部] target_labels [ f{Config.names[cls_id]}_{idx} for idx, cls_id in enumerate(self.detection_classes) ] options.extend(target_labels) self.ui.comboBox.clear() self.ui.comboBox.addItems(options) def _show_detection_details(self, index0): 显示检测目标的详细信息 if not self.detection_boxes: self._clear_detection_details() return box self.detection_boxes[index] self.ui.type_lb.setText(Config.CH_names[self.detection_classes[index]]) self.ui.label_conf.setText(self.confidence_scores[index]) self.ui.label_xmin.setText(str(box[0])) self.ui.label_ymin.setText(str(box[1])) self.ui.label_xmax.setText(str(box[2])) self.ui.label_ymax.setText(str(box[3])) def _clear_detection_details(self): 清空检测详情显示 self.ui.type_lb.setText() self.ui.label_conf.setText() self.ui.label_xmin.setText() self.ui.label_ymin.setText() self.ui.label_xmax.setText() self.ui.label_ymax.setText() def _display_results_table(self, source_path): 在表格中显示检测结果 table self.ui.tableWidget table.setRowCount(0) table.clearContents() for idx, (box, cls_id, conf) in enumerate(zip( self.detection_boxes, self.detection_classes, self.confidence_scores)): row table.rowCount() table.insertRow(row) # 添加表格项 items [ QTableWidgetItem(str(row 1)), # ID QTableWidgetItem(source_path), # 路径 QTableWidgetItem(Config.CH_names[cls_id]), # 类别 QTableWidgetItem(conf), # 置信度 QTableWidgetItem(str(box)) # 位置坐标 ] # 设置文本居中 for item in [items[0], items[2], items[3]]: item.setTextAlignment(Qt.AlignCenter) # 添加到表格 for col, item in enumerate(items): table.setItem(row, col, item) table.scrollToBottom() def _process_image_batch(self): 批量处理图片 self._stop_video_capture() folder QFileDialog.getExistingDirectory(self, 选择图片文件夹, ./) if not folder: return self.source_path folder valid_extensions {jpg, png, jpeg, bmp} for filename in os.listdir(folder): filepath os.path.join(folder, filename) if (os.path.isfile(filepath) and filename.split(.)[-1].lower() in valid_extensions): self._process_single_image(filepath) QApplication.processEvents() # 保持UI响应 def _update_selection(self): 更新用户选择的检测目标显示 selection self.ui.comboBox.currentText() if selection 全部: boxes self.detection_boxes display_img self.current_result self._show_detection_details(0) else: idx int(selection.split(_)[-1]) boxes [self.detection_boxes[idx]] display_img self.detector(self.source_path)[0][idx].plot() self._show_detection_details(idx) # 更新显示 width, height self._calculate_display_size(display_img) resized_img cv2.resize(display_img, (width, height)) qimage tools.cvimg_to_qpiximg(resized_img) self.ui.label_show.clear() self.ui.label_show.setPixmap(qimage) self.ui.label_show.setAlignment(Qt.AlignCenter) def _handle_video_input(self): 处理视频输入 if self.camera_active: self._toggle_camera() video_path self._get_video_path() if not video_path: return self._start_video_processing(video_path) self.ui.comboBox.setEnabled(False) def _get_video_path(self): 获取视频文件路径 path, _ QFileDialog.getOpenFileName( self, 选择视频, ./, 视频文件 (*.avi *.mp4)) if path: self.source_path path self.ui.VideolineEdit.setText(path) return path return None def _start_video_processing(self, video_path): 开始处理视频流 self.video_capture cv2.VideoCapture(video_path) self.frame_timer.start(1) self.frame_timer.timeout.connect(self._process_video_frame) def _stop_video_capture(self): 停止视频捕获 if self.video_capture: self.video_capture.release() self.frame_timer.stop() self.camera_active False self.ui.CaplineEdit.setText(摄像头未开启) self.video_capture None def _process_video_frame(self): 处理视频帧 ret, frame self.video_capture.read() if not ret: self._stop_video_capture() return # 执行目标检测 start_time time.time() results self.detector(frame)[0] processing_time time.time() - start_time # 解析结果 self.detection_boxes results.boxes.xyxy.int().tolist() self.detection_classes results.boxes.cls.int().tolist() self.confidence_scores [f{conf * 100:.2f}% for conf in results.boxes.conf.tolist()] # 更新显示 self._update_detection_display(results, processing_time) self._update_object_selection() self._show_detection_details() self._display_results_table(self.source_path) def _toggle_camera(self): 切换摄像头状态 self.camera_active not self.camera_active if self.camera_active: self.ui.CaplineEdit.setText(摄像头开启) self.video_capture cv2.VideoCapture(0) self._start_video_processing(0) self.ui.comboBox.setEnabled(False) else: self.ui.CaplineEdit.setText(摄像头未开启) self.ui.label_show.clear() self._stop_video_capture() def _save_results(self): 保存检测结果 if not self.video_capture and not self.source_path: QMessageBox.information(self, 提示, 没有可保存的内容请先打开图片或视频) return if self.camera_active: QMessageBox.information(self, 提示, 无法保存摄像头实时视频) return if self.video_capture: self._save_video_result() else: self._save_image_result() def _save_video_result(self): 保存视频检测结果 confirm QMessageBox.question( self, 确认, 保存视频可能需要较长时间确定继续吗, QMessageBox.Yes | QMessageBox.No) if confirm QMessageBox.No: return self._stop_video_capture() saver VideoSaverThread( self.source_path, self.detector, self.ui.comboBox.currentText()) saver.start() saver.update_ui_signal.connect(self._update_progress) def _save_image_result(self): 保存图片检测结果 if os.path.isfile(self.source_path): # 处理单张图片 filename os.path.basename(self.source_path) name, ext filename.rsplit(., 1) save_name f{name}_detect_result.{ext} save_path os.path.join(Config.save_path, save_name) cv2.imwrite(save_path, self.current_result) QMessageBox.information( self, 完成, f图片已保存至: {save_path}) else: # 处理文件夹中的图片 valid_exts {jpg, png, jpeg, bmp} for filename in os.listdir(self.source_path): if filename.split(.)[-1].lower() in valid_exts: filepath os.path.join(self.source_path, filename) name, ext filename.rsplit(., 1) save_name f{name}_detect_result.{ext} save_path os.path.join(Config.save_path, save_name) results self.detector(filepath)[0] cv2.imwrite(save_path, results.plot()) QMessageBox.information( self, 完成, f所有图片已保存至: {Config.save_path}) def _update_progress(self, current, total): 更新保存进度 if current 1: self.progress_dialog ProgressBar(self) self.progress_dialog.show() if current total: self.progress_dialog.close() QMessageBox.information( self, 完成, f视频已保存至: {Config.save_path}) return if not self.progress_dialog.isVisible(): return percent int(current / total * 100) self.progress_dialog.setValue(current, total, percent) QApplication.processEvents() class VideoSaverThread(QThread): 视频保存线程 update_ui_signal pyqtSignal(int, int) def __init__(self, video_path, model, selection): super().__init__() self.video_path video_path self.detector model self.selection selection self.active True self.colors tools.Colors() def run(self): 执行视频保存 cap cv2.VideoCapture(self.video_path) fourcc cv2.VideoWriter_fourcc(*XVID) fps cap.get(cv2.CAP_PROP_FPS) size ( int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) filename os.path.basename(self.video_path) name, _ filename.split(.) save_path os.path.join( Config.save_path, f{name}_detect_result.avi) writer cv2.VideoWriter(save_path, fourcc, fps, size) total_frames int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) current_frame 0 while cap.isOpened() and self.active: current_frame 1 ret, frame cap.read() if not ret: break # 执行检测 results self.detector(frame)[0] frame results.plot() writer.write(frame) self.update_ui_signal.emit(current_frame, total_frames) # 释放资源 cap.release() writer.release() def stop(self): 停止保存过程 self.active False if __name__ __main__: app QApplication(sys.argv) window DetectionApp() window.show() sys.exit(app.exec_())七、项目演示与介绍视频基于深度学习的奶牛行为检测系统YOLOv8YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习的奶牛行为检测系统YOLOv8YOLO数据集UI界面Python项目源码模型