企业网站推广哪家好企业网站导航优化
2026/2/16 19:27:52 网站建设 项目流程
企业网站推广哪家好,企业网站导航优化,网站建设课后感,自己做产品品牌网站一、项目介绍 摘要 本项目基于YOLOv10算法开发了一套高效准确的木材缺陷检测系统#xff0c;专门用于识别和分类木材表面常见的三种缺陷#xff1a;裂纹(Crack)、死结(Dead Knot)和活结(Live Knot)。系统通过对木材表面图像进行实时分析#xff0c;能够快速定位缺陷位置并…一、项目介绍摘要本项目基于YOLOv10算法开发了一套高效准确的木材缺陷检测系统专门用于识别和分类木材表面常见的三种缺陷裂纹(Crack)、死结(Dead Knot)和活结(Live Knot)。系统通过对木材表面图像进行实时分析能够快速定位缺陷位置并判断其类型为木材质量评估和分级提供自动化解决方案。项目使用包含2606张标注图像的数据集进行训练和验证其中训练集2259张验证集173张测试集174张。实验结果表明该系统在木材缺陷检测任务上达到了较高的准确率和召回率能够满足工业生产中对木材质量检测的需求。项目意义木材缺陷检测在木材加工和质量控制领域具有重要意义。传统的人工检测方法效率低下、成本高昂且容易因疲劳导致误检漏检。本项目的实施将带来以下重要价值提高检测效率自动化检测系统可以24小时不间断工作单次检测时间可缩短至毫秒级大幅提升木材生产线的检测吞吐量。降低人工成本减少对专业质检人员的依赖长期使用可显著降低企业人力成本。提升检测一致性算法检测结果稳定可靠避免了人工检测中因主观判断和疲劳导致的检测标准不一致问题。数字化质量管理检测结果可数字化记录和分析便于质量追溯和生产工艺优化。促进产业升级为木材加工企业向智能制造转型提供关键技术支撑提升产品竞争力。目录一、项目介绍摘要项目意义二、项目功能展示系统功能图片检测视频检测摄像头实时检测三、数据集介绍数据集概述数据集特点数据集配置文件数据集制作流程​编辑​编辑​编辑​编辑​编辑​编辑​编辑四、项目环境配置创建虚拟环境pycharm中配置anaconda安装所需要库五、模型训练训练代码训练结果六、核心代码七、项目源码视频下方简介内基于深度学习YOLOv10的木材缺陷检测系统YOLOv10YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv10的木材缺陷检测系统YOLOv10YOLO数据集UI界面Python项目源码模型二、项目功能展示系统功能✅图片检测可对图片进行检测返回检测框及类别信息。✅视频检测支持视频文件输入检测视频中每一帧的情况。✅摄像头实时检测连接USB 摄像头实现实时监测。✅参数实时调节置信度和IoU阈值图片检测该功能允许用户通过单张图片进行目标检测。输入一张图片后YOLO模型会实时分析图像识别出其中的目标并在图像中框出检测到的目标输出带有目标框的图像。视频检测视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示适用于视频监控和分析等场景。摄像头实时检测该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用提供即时反馈。核心特点高精度基于YOLO模型提供精确的目标检测能力适用于不同类型的图像和视频。实时性特别优化的算法使得实时目标检测成为可能无论是在视频还是摄像头实时检测中响应速度都非常快。批量处理支持高效的批量图像和视频处理适合大规模数据分析。三、数据集介绍数据集概述本项目构建了一个专业化的木材缺陷图像数据集共包含2606张高质量标注图像按照8:1:1的比例划分为训练集(2259张)、验证集(173张)和测试集(174张)。数据集涵盖了三种典型的木材表面缺陷裂纹(Crack)木材表面或内部的断裂现象死结(Dead Knot)树枝枯死后在树干中形成的深色结疤活结(Live Knot)活树枝在树干中形成的结疤数据集特点多样性数据集包含了不同树种(如松木、橡木、桦木等)、不同光照条件、不同拍摄角度和不同缺陷大小的样本确保了模型的泛化能力。高质量标注所有图像均由专业质检人员标注标注精度达到像素级边界框紧密贴合缺陷区域。平衡性三类缺陷的样本数量经过平衡处理避免了类别不平衡导致的模型偏差。真实工业场景大部分图像采集自实际木材加工生产线包含真实的背景干扰和噪声增强了模型的实用性。多尺度缺陷数据集中既包含大尺寸明显缺陷也包含小尺寸难以察觉的缺陷考验模型的多尺度检测能力。数据集配置文件数据集采用YOLO格式进行组织配置文件内容如下# YOLOv10木材缺陷检测数据集配置文件 path: ../datasets/wood_defect train: images/train val: images/val test: images/test nc: 3 names: [Crack, Dead Knot, Live Knot] # 图像参数 img_size: 640 # 训练图像尺寸 batch_size: 16 # 训练批次大小 workers: 4 # 数据加载线程数数据集制作流程原始数据采集使用工业CCD相机在木材生产线上采集原始图像设置多角度光源确保缺陷清晰可见采集不同树种、不同等级的木材样本数据清洗剔除模糊、过曝或欠曝的图像去除无缺陷的空白图像检查并删除标注错误的样本数据标注使用LabelImg等标注工具手动标注缺陷区域为每个缺陷划定精确的边界框指定对应的缺陷类别标签数据增强应用旋转、翻转、缩放等几何变换调整亮度、对比度、饱和度等色彩参数添加高斯噪声模拟工业环境干扰使用mosaic增强提升小目标检测能力数据集划分按照8:1:1比例随机划分训练集、验证集和测试集确保各类别在各数据集中分布均衡检查并避免同一木材样本出现在不同数据集格式转换将标注转换为YOLO格式的txt文件生成数据集索引文件创建数据集配置文件四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov10 python3.9激活虚拟环境conda activate yolov10安装cpu版本pytorchpip install torch torchvision torchaudiopycharm中配置anaconda安装所需要库pip install -r requirements.txt五、模型训练训练代码from ultralytics import YOLOv10 model_path yolov10s.pt data_path datasets/data.yaml if __name__ __main__: model YOLOv10(model_path) results model.train(datadata_path, epochs500, batch64, device0, workers0, projectruns/detect, nameexp, )根据实际情况更换模型 yolov10n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 yolov10s.yaml (small)小模型适合实时任务。 yolov10m.yaml (medium)中等大小模型兼顾速度和精度。 yolov10b.yaml (base)基本版模型适合大部分应用场景。 yolov10l.yaml (large)大型模型适合对精度要求高的任务。--batch 64每批次64张图像。--epochs 500训练500轮。--datasets/data.yaml数据集配置文件。--weights yolov10s.pt初始化模型权重yolov10s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog from PyQt5.QtCore import QThread, pyqtSignal from ultralytics import YOLOv10 from UiMain import UiMainWindow import time import os class DetectionThread(QThread): frame_received pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果 finished_signal pyqtSignal() # 线程完成信号 def __init__(self, model, source, conf, iou, parentNone): super().__init__(parent) self.model model self.source source self.conf conf self.iou iou self.running True def run(self): try: if isinstance(self.source, int) or self.source.endswith((.mp4, .avi, .mov)): # 视频或摄像头 cap cv2.VideoCapture(self.source) while self.running and cap.isOpened(): ret, frame cap.read() if not ret: break # 保存原始帧 original_frame frame.copy() # 检测 results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) # 发送信号 self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) # 控制帧率 time.sleep(0.03) # 约30fps cap.release() else: # 图片 frame cv2.imread(self.source) if frame is not None: original_frame frame.copy() results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) except Exception as e: print(fDetection error: {e}) finally: self.finished_signal.emit() def stop(self): self.running False class MainWindow(UiMainWindow): def __init__(self): super().__init__() # 初始化模型 self.model None self.detection_thread None self.current_image None self.current_result None self.video_writer None self.is_camera_running False self.is_video_running False self.last_detection_result None # 新增保存最后一次检测结果 # 连接按钮信号 self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) # 初始化模型 self.load_model() def load_model(self): try: model_name self.model_combo.currentText() self.model YOLOv10(f{model_name}.pt) # 自动下载或加载本地模型 self.update_status(f模型 {model_name} 加载成功) except Exception as e: QMessageBox.critical(self, 错误, f模型加载失败: {str(e)}) self.update_status(模型加载失败) def detect_image(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp)) if file_path: self.clear_results() self.current_image cv2.imread(file_path) self.current_image cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB) self.display_image(self.original_image_label, self.current_image) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测图片: {os.path.basename(file_path)}) def detect_video(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择视频, , 视频文件 (*.mp4 *.avi *.mov)) if file_path: self.clear_results() self.is_video_running True # 初始化视频写入器 cap cv2.VideoCapture(file_path) frame_width int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps cap.get(cv2.CAP_PROP_FPS) cap.release() # 创建保存路径 save_dir results os.makedirs(save_dir, exist_okTrue) timestamp time.strftime(%Y%m%d_%H%M%S) save_path os.path.join(save_dir, fresult_{timestamp}.mp4) fourcc cv2.VideoWriter_fourcc(*mp4v) self.video_writer cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height)) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测视频: {os.path.basename(file_path)}) def detect_camera(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return self.clear_results() self.is_camera_running True # 创建检测线程 (默认使用摄像头0) conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, 0, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(正在从摄像头检测...) def stop_detection(self): if self.detection_thread and self.detection_thread.isRunning(): self.detection_thread.stop() self.detection_thread.quit() self.detection_thread.wait() if self.video_writer: self.video_writer.release() self.video_writer None self.is_camera_running False self.is_video_running False self.update_status(检测已停止) def on_frame_received(self, original_frame, result_frame, detections): # 更新原始图像和结果图像 self.display_image(self.original_image_label, original_frame) self.display_image(self.result_image_label, result_frame) # 保存当前结果帧用于后续保存 self.last_detection_result result_frame # 新增保存检测结果 # 更新表格 self.clear_results() for class_name, confidence, x, y in detections: self.add_detection_result(class_name, confidence, x, y) # 保存视频帧 if self.video_writer: self.video_writer.write(cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR)) def on_detection_finished(self): if self.video_writer: self.video_writer.release() self.video_writer None self.update_status(视频检测完成结果已保存) elif self.is_camera_running: self.update_status(摄像头检测已停止) else: self.update_status(图片检测完成) def save_result(self): if not hasattr(self, last_detection_result) or self.last_detection_result is None: QMessageBox.warning(self, 警告, 没有可保存的检测结果) return save_dir results os.makedirs(save_dir, exist_okTrue) timestamp time.strftime(%Y%m%d_%H%M%S) if self.is_camera_running or self.is_video_running: # 保存当前帧为图片 save_path os.path.join(save_dir, fsnapshot_{timestamp}.jpg) cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f截图已保存: {save_path}) else: # 保存图片检测结果 save_path os.path.join(save_dir, fresult_{timestamp}.jpg) cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f检测结果已保存: {save_path}) def closeEvent(self, event): self.stop_detection() event.accept() if __name__ __main__: app QApplication(sys.argv) # 设置应用程序样式 app.setStyle(Fusion) # 创建并显示主窗口 window MainWindow() window.show() sys.exit(app.exec_())七、项目源码视频下方简介内完整全部资源文件包括测试图片、视频py文件训练数据集、训练代码、界面代码等这里已打包上传至博主的面包多平台见可参考博客与视频已将所有涉及的文件同时打包到里面点击即可运行完整文件截图如下基于深度学习YOLOv10的木材缺陷检测系统YOLOv10YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv10的木材缺陷检测系统YOLOv10YOLO数据集UI界面Python项目源码模型

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询